ПАТОГЕНЕЗ ПОРУШЕНЬ МОРФОФУНКЦІОНАЛЬНОГО СТАНУ ПЕЧІНКИ ПРИ ЦУКРОВОМУ ДІАБЕТІ ПЕРШОГО ТИПУ

Автор(и)

  • O. V. Tkachuk
  • S. S. Tkachuk
  • M. A. Povar
  • S. V. Boshtan
  • V. D. Sorokhan

DOI:

https://doi.org/10.24061/1727-4338.XIX.2.72.2020.14

Ключові слова:

цукровий діабет, гепатопатії, патогенез

Анотація

Мета роботи – проаналізувати сучасні наукові погляди на патогенез ушкодження
печінки при цукровому діабеті першого типу.
Висновок. Проаналізовані літературні дані розкривають механізми порушень
сигнальних шляхів інсуліну при ЦД типу 1, які призводять до активації
гепатотоксичних механізмів.

Посилання

1. Savych OA. Kompleksna radionuklidna diahnostyka

funktsional'noho stanu pechinky ta zhovchnoho mikhura u

khvorykh na tsukrovyi diabet [Comprehensive radionuclide

diagnosis of the functional state of the liver and gallbladder in

patients with diabetes] [dissertation]. Kiev; 2007. 126 p. (in

Ukrainian)

2. Al-Hussaini AA, Sulaiman NM, Alzahrani MD, Alenizi AS, Khan

M. Prevalence of hepatopathy in type 1 diabetic children. BMC

Pediatr [Internet]. 2012[cited 2020 Jul 12];12:160. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3506494/

pdf/1471-2431-12-160.pdf doi: 10.1186/1471-2431-12-160

3. Cusi K, Sanyal AJ, Zhang S, Hartman ML, Bue-Valleskey JM, Hoogwerf BJ, et al. Non-alcoholic fatty liver disease (NAFLD)

prevalence and its metabolic associations in patients with

type 1 diabetes and type 2 diabetes. Diabetes Obes Metab.

2017;19(11):1630-4. doi: 10.1111/dom.12973

4. Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old

questions and new insights. Science. 2011;332(6037):1519-23.

doi: 10.1126/science.1204265

5. Llauradó G, Sevastianova K, Sädevirta S, Hakkarainen A,

Lundbom N, Orho-Melander M, et al. Liver fat content and

hepatic insulin sensitivity in overweight patients with type 1

diabetes. J Clin Endocrinol Metab. 2015;100(2):607-16. doi:

10.1210/jc.2014-3050

6. Masaron M, Rosato V, Dallio M, Gravina AG, Aglitti A,

Loguercio C, et al. Role of Oxidative Stress in Pathophysiology

of Nonalcoholic Fatty Liver Disease. Oxid Med Cell Longev

[Internet]. 2018[cited 2020 Jul 12];2018:9547613. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6016172/

pdf/OMCL2018-9547613.pdf doi: 10.1155/2018/9547613

7. Lee JY, Kim MY, Shin SH, Shin MR, Kwon OJ, Kim TH, et

al. Persicarin isolated from Oenanthe javanica protects against

diabetes-induced oxidative stress and inflammation in the liver

of streptozotocin-induced type 1 diabetic mice. Exp Ther Med.

2017;13(4):1194-202. doi: 10.3892/etm.2017.4113

8. Mendes-Braz M, Martins JO. Diabetes Mellitus and Liver

Surgery: The Effect of Diabetes on Oxidative Stress and

Inflammation. Mediators Inflamm [Internet]. 2018[cited 2020 Jul

12];2018:2456579. Available from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC5964489/pdf/MI2018-2456579.pdf doi:

10.1155/2018/2456579

9. Magee N, Zou A, Zhang Y. Pathogenesis of Nonalcoholic

Steatohepatitis: Interactions between Liver Parenchymal and

Nonparenchymal Cells. Biomed Res Int [Internet]. 2016[cited

2020 Jul 12];2016:5170402. Available from: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC5086374/pdf/BMRI2016-

5170402.pdf doi: 10.1155/2016/5170402

10. Bessone F, Razori MV, Roma MG. Molecular pathways of

nonalcoholic fatty liver disease development and progression.

Cell Mol Life Sci. 2019;76(1):99-128. doi: 10.1007/s00018-018-

2947-0

11. Santos JC, Valentim IB, de Araújo OR, Ataide Tda R, Goulart

MO. Development of Nonalcoholic Hepatopathy: Contributions

of Oxidative Stress and Advanced Glycation End Products. Int

J Mol Sci. 2013;14(10):19846–66. doi: 10.3390/ijms141019846

12. Palsamy P, Sivakumar S, Subramanian S. Resveratrol attenuates

hyperglycemia-mediated oxidative stress, proinflammatory

cytokines and protects hepatocytes ultrastructure in streptozotocinnicotinamide-induced experimental diabetic rats. Chem Biol

Interact. 2010;186(2):200–10. doi: 10.1016/j.cbi.2010.03.028

13. Martínez-Flórez S, Gutiérrez-Fernández B, Sánchez-Campos

S, González-Gallego J, Tuñón MJ. Quercetin attenuates nuclear

factor-kappaB activation and nitric oxide production in interleukin-

1beta-activated rat hepatocytes. J Nutr. 2005;135(6):1359–65.

doi: https://doi.org/10.1093/jn/135.6.1359

14. Manna P, Das J, Ghosh J, Sil PC. Contribution of type 1 diabetes

to rat liver dysfunction and cellular damage via activation

of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and

mitochondria-dependent pathways: Prophylactic role of arjunolic

acid. Free Radic Biol Med. 2010;48(11):1465–84. doi: https://doi.

org/10.1016/j.freeradbiomed.2010.02.025

15. Zhang C, Lu X, Tan Y, Li B, Miao X, Jin L, et al. Diabetesinduced hepatic pathogenic damage, inflammation, oxidative

stress, and insulin resistance was exacerbated in zinc deficient

mouse model. PLoS One [Internet]. 2012[cited 2020 Jul

14];7(12):e49257. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3520990/pdf/pone.0049257.pdf doi: 10.1371/

journal.pone.0049257

16. Gu Y, Lian X, Sun W, Gao B, Fu Y. Diabetes Mellitus induces

alterations in metallothionein protein expression and metal levels

in the testis and liver. J Int Med Res. 2018;46(1):185-94. doi:

10.1177/0300060517708923

17. Aldaba-Muruato LR, Moreno MG, Hernández-Mercado E,

Shibayama M, Muriel P. Secondary biliary cirrhosis in the rat is

prevented by decreasing NF-κB nuclear translocation and TGF-β

expression using allopurinol, an inhibitor of xanthine oxidase.

Can J Physiol Pharmacol. 2012;90(11):1469-78. doi: https://doi.

org/10.1139/y2012-125

18. Nakagawa H, Maeda S. Molecular mechanisms of liver injury

and hepatocarcinogenesis: Focusing on the role of stressactivated MAPK. Patholog Res Int [Internet]. 2012[cited 2020

Jul 14];2012:172894. Available from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC3361329/pdf/PRI2012-172894.pdf doi:

10.1155/2012/172894

19. Hayes CN, Zhang P, Zhang Y, Chayama K. Molecular Mechanisms

of Hepatocarcinogenesis Following Sustained Virological

Response in Patients with Chronic Hepatitis C Virus Infection.

Viruses [Internet]. 2018[cited 2020 Jul 12];10(10):531. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6212901/

pdf/viruses-10-00531.pdf doi: 10.3390/v10100531

20. Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, et al. The

Role of Oxidative Stress and Antioxidants in Liver Diseases. Int

J Mol Sci. 2015;16(11):26087–124. doi: 10.3390/ijms161125942

21. Zhuang A, Yap FY, Bruce C, Leung C, Plan MR, Sullivan MA, et

al. Increased liver AGEs induce hepatic injury mediated through

an OST48 pathway. Sci Rep [Internet]. 2017[cited 2020 Jul

14];7(1):12292. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC5612946/pdf/41598_2017_Article_12548.pdf

doi: 10.1038/s41598-017-12548-4

22. Pereira ENGDS, Silvares RR, Flores EEI, Rodrigues KL, Ramos

IP, da Silva IJ, et al. Hepatic microvascular dysfunction and

increased advanced glycation end products are components of

non-alcoholic fatty liver disease. PLoS One [Internet]. 2017[cited

2020 Jul 11];12(6):e0179654. Available from: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC5476253/pdf/pone.0179654.pdf

doi: 10.1371/journal.pone.0179654

23. Takeuchi M, Takino J, Sakasai-Sakai A, Takata T, Ueda T,

Tsutsumi M, et al. Involvement of the TAGE-RAGE system in

non-alcoholic steatohepatitis: Novel treatment strategies. World J

Hepatol. 2014;6(12):880-93. doi: 10.4254/wjh.v6.i12.880

24. Hollenbach M. The Role of Glyoxalase-I (Glo-I), Advanced

Glycation Endproducts (AGEs), and Their Receptor (RAGE) in

Chronic Liver Disease and Hepatocellular Carcinoma (HCC).

Int J Mol Sci [Internet]. 2017[cited 2020 Jul 11];18(11):2466.

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5713432/pdf/ijms-18-02466.pdf doi: 10.3390/ijms18112466

25. Takeuchi M, Sakasai-Sakai A, Takata T, Ueda T, Takino J,

Tsutsumi M, et al. Serum levels of toxic AGEs (TAGE) may be

a promising novel biomarker in development and progression

of NASH. Med Hypotheses. 2015;84(5):490-3. doi: https://doi.

org/10.1016/j.mehy.2015.02.002

26. Sayej WN, Knight Iii PR, Guo WA, Mullan B, Ohtake PJ, Davidson

BA, et al. Advanced Glycation End Products Induce Obesity

and Hepatosteatosis in CD-1 Wild-Type Mice. Biomed Res Int

[Internet]. 2016[cited 2020 Jul 14];2016:7867852. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753052/

pdf/BMRI2016-7867852.pdf doi: 10.1155/2016/7867852

27. Guimarães EL, Empsen C, Geerts A, van Grunsven LA.

Advanced glycation end products induce production of reactive

oxygen species via the activation of NADPH oxidase in murine

hepatic stellate cells. J Hepatol. 2010;52(3):389–97. doi: https://

doi.org/10.1016/j.jhep.2009.12.007

28. Iroz A, Couty JP, Postic C. Hepatokines: Unlocking the

multi-organ network in metabolic diseases. Diabetologia.

2015;58(8):1699–703. doi: 10.1007/s00125-015-3634-4

29. Roshanzamir F, Miraghajani M, Rouhani MH, Mansourian M,

Ghiasvand R, Safavi SM. The association between circulating

fetuin-A levels and type 2 diabetes mellitus risk: systematic

review and meta-analysis of observational studies. J Endocrinol

Invest. 2018;41(1):33-47. doi: 10.1007/s40618-017-0697-8

30. 30. Stefan N, Sun Q, Fritsche A, Machann J, Schick F, Gerst

F, et al. Impact of the adipokine adiponectin and the hepatokine

fetuin-A on the development of type 2 diabetes: Prospective

cohort- and cross-sectional phenotyping studies. PLoS One

[Internet]. 2014[cited 2020 Jul 14];9(3):e92238. https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC3958485/pdf/pone.0092238.

pdf doi: 10.1371/journal.pone.0092238

31. Kohl T, Gehrke N, Schad A, Wörns MA, Sprinzl MF, Zimmermann

T, et al. Diabetic liver injury from streptozotocin is regulated

through the caspase-8 homolog cFLIP involving activation of

JNK2 and intrahepatic immunocompetent cells. Cell Death Dis

[Internet]. 2013[cited 2020 Jul 11];4(7):e712. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730402/pdf/

cddis2013228a.pdf doi: 10.1038/cddis.2013.228

32. Landis J, Shaw LM. Insulin receptor substrate 2-mediated

phosphatidylinositol 3-kinase signaling selectively inhibits

glycogen synthase kinase 3β to regulate aerobic glycolysis. J Biol

Chem. 2014;289(26):18603-13. doi: 10.1074/jbc.M114.564070

33. Mercado-Matos J, Janusis J, Zhu S, Chen SS, Shaw LM.

Identification of a Novel Invasion-Promoting Region in Insulin

Receptor Substrate 2. Mol Cell Biol [Internet]. 2018[cited 2020

Jul 12];38(14):e00590-17. Available from: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC6024166/pdf/e00590-17.pdf doi:

10.1128/MCB.00590-17

34. Schattenberg JM, Zimmermann T, Wörns M, Sprinzl MF, Kreft

A, Kohl T, et al. Ablation of c-FLIP in hepatocytes enhances

death-receptor mediated apoptosis and toxic liver injury in vivo.

J Hepatol. 2011;55(6):1272-80. doi: 10.1016/j.jhep.2011.03.008

35. Regnell SE, Lernmark A. Hepatic Steatosis in Type 1 Diabetes. Rev

Diabet Stud. 2011;8(4):454–67. doi: 10.1900/RDS.2011.8.454

36. Czech MP, Tencerova M, Pedersen DJ, Aouadi M. Insulin

signalling mechanisms for triacylglycerol storage. Diabetologia.

2013;56(5):949-64. doi: 10.1007/s00125-013-2869-1

37. Kim TH, Kim H, Park JM, Im SS, Bae JS, Kim MY, et

al. Interrelationship between liver X receptor alpha, sterol

regulatory element-binding protein-1c, peroxisome proliferatoractivated receptor gamma, and small heterodimer partner in the

transcriptional regulation of gluco-kinase gene expression in

liver. J Biol Chem. 2009;284(22):15071-83. doi: 10.1074/jbc.

M109.006742

38. Park JM, Kim TH, Jo SH, Kim MY, Ahn YH. Acetylation of

glucokinase regulatory protein decreases glucose metabolism by

suppressing glucokinase activity. Sci Rep [Internet]. 2015[cited

2020 Jul 12];5:17395. Available from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC4664969/pdf/srep17395.pdf doi: 10.1038/

srep17395

39. Dentin R, Girard J, Postic C. Carbohydrate responsive element

binding protein (ChREBP) and sterol regulatory element binding

protein-1c (SREBP-1c): two key regulators of glucose metabolism

and lipid synthesis in liver. Biochimie. 2005;87(1):81-6. doi:

10.1016/j.biochi.2004.11.008

40. Takeuchi Y, Yahagi N, Aita Y, Murayama Y, Sawada Y, Piao X,

et al. KLF15 Enables Rapid Switching between Lipogenesis and

Gluconeogenesis during Fasting. Cell Rep. 2016;16(9):2373-86.

doi: 10.1016/j.celrep.2016.07.069

41. Moslehi A, Hamidi-Zad Z. Role of SREBPs in Liver Diseases:

A Mini-review. J Clin Transl Hepatol. 2018;6(3):332-8. doi:

10.14218/JCTH.2017.00061

42. Ferré P, Foufelle F. Hepatic steatosis: a role for de novo lipogenesis

and the transcription factor SREBP-1c. Diabetes Obes Metab.

2010;12(Suppl 2):83-92. doi: 10.1111/j.1463-1326.2010.01275.x

43. Geisler CE, Renquist BJ. Hepatic lipid accumulation: cause

and consequence of dysregulated glucoregulatory hormones. J

Endocrinol [Internet]. 2017[cited 2020 Jul 12];234(1):R1-R21.

Available from: https://joe.bioscientifica.com/view/journals/

joe/234/1/R1.xml doi: 10.1530/JOE-16-0513

44. Softic S, Kirby M, Shroyer N, Kohli R. Hepatic steatosis in type

2 and type 1 diabetes mellitus is mediated by insulin signaling

via fatty acid transport proteins. J Pediatr Gastroenterol Nutr.

2010;51(Suppl 2):E33–4.

45. Fick T, Jack J, Pyle-Eilola AL, Henry RK. Severe

hypertriglyceridemia at new onset type 1 diabetes mellitus. J

Pediatr Endocrinol Metab. 2017;30(8):893-7. doi: 10.1515/jpem-

2017-0008

46. Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and

non-alcoholic fatty liver disease. J Hepatol. 2013;58(2):395–8.

doi: https://doi.org/10.1016/j.jhep.2012.08.018

47. Abaci A, Bekem O, Unuvar T, Ozer E, Bober E, Arslan N, et al.

Hepatic glycogenosis: a rare cause of hepatomegaly in type 1

diabetes mellitus. J Diabetes Complications. 2008;22(5):325–8.

doi: 10.1016/j.jdiacomp.2007.11.002

48. Imtiaz KE, Healy C, Sharif S, Drake I, Awan F, Riley J, et al.

Glycogenic Hepatopathy in Type 1 Diabetes: An Underrecognized.

Diabetes Care [Internet]. 2013[cited 2020 Jul 10];36(1):e6–e7.

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC3526232/pdf/e6.pdf doi: 10.2337/dc12-1134

49. Atmaca M, Ucler R, Kartal M, Seven I, Alay M, Bayram I, et

al. Glycogenic Hepatopathy in Type 1 Diabetes Mellitus. Case

Reports Hepatol [Internet]. 2015[cited 2020 Jul 10];2015:236143.

Available from: http://downloads.hindawi.com/journals/

crihep/2015/236143.pdf doi: https://doi.org/10.1155/2015/236143

50. Abboud W, Abdulla S, Al Zaabi M, Moufarrej R. Young Man

with Hepatomegaly: A Case of Glycogenic Hepatopathy.

Case Reports Hepatol [Internet]. 2018[cited 2020 Jul

10];2018:6037530. Available from: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC5925151/pdf/CRIHEP2018-6037530.pdf

doi: 10.1155/2018/6037530

##submission.downloads##

Опубліковано

2020-09-13

Номер

Розділ

Статті