РОЛЬ СИГНАЛЬНИХ ШЛЯХІВ ІНСУЛІНУ В ЗАБЕЗПЕЧЕННІ ФІЗІОЛОГІЧНОГО СТАНУ ГОЛОВНОГО МОЗКУ ТА НЕЙРОПРОТЕКЦІЇ ПРИ ГОСТРИХ ПОРУШЕННЯХ МОЗКОВОГО КРОВООБІГУ

Автор(и)

  • О.В. Ткачук
  • С.С. Ткачук
  • М.А. Повар
  • С.О. Кисилиця
  • В.Д. Сорохан
  • О.І. Денисенко
  • М. Д. Перепелюк

DOI:

https://doi.org/10.24061/1727-4338.XXI.2.80.2022.10

Ключові слова:

мозок, сигнальні шляхи інсуліну, ішемія-реперфузія головного мозку

Анотація

Мета роботи – здійснити аналіз даних світової літератури стосовно ролі
сигнальних шляхів інсуліну у функціонуванні головного мозку за умов норми
та гострого порушення церебрального кровобігу.
Висновки. Згідно даних літератури множинні ефекти інсуліну в головному мозку
забезпечуються наявністю плейотропних сигнальних шляхів цього гормону.
Інсулін необхідний для підтримання нормального морфофункціонального стану
нервової тканини. За умов гострого порушення церебрального кровообігу усі відомі
насьогодніцеребральніефектиінсулінуспрямованіназабезпеченнянейропротекції,
яка реалізується полідромними механізмами.

Посилання

Ding Q, Liu S, Yao Y, Liu H, Cai T, Han L. Global, Regional,

and National Burden of Ischemic Stroke, 1990-2019. Neurology [Internet]. 2022[cited 2022 Jun 23];98(3): e279-90. Available

from: https://n.neurology.org/content/98/3/e279.long doi: 10.1212/

WNL.0000000000013115

Waldman A, Rawal AR. Stroke Center Certification [Internet].

Treasure Island (FL): StatPearls Publishing; 2019[cited 2022 Jun 21].

Available from: https://www.ncbi.nlm.nih.gov/books/NBK535392/

Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang

AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018

Update: A Report From the American Heart Association.

Circulation [Internet]. 2018[cited 2022 Jun 21];137(12): e67-e492.

Available from: https://www.ahajournals.org/doi/pdf/10.1161/

CIR.0000000000000558 doi: 10.1161/cir.0000000000000558

Mischenko TS. Analiz epidemiolohii tserebrovaskuliarnykh

khvorob v Ukraini [Analysis of the epidemiology of cerebrovascular

diseases in Ukraine]. Sudynni zakhvoriuvannia holovnoho mozku.

;3:2-9. (in Ukranian)

Zozulia YuP, Mischenko TS. Problemy sudynno- tserebral’noi

patolohii ta shliakhy yikh vyrishennia [Problems of vascular and

cerebral pathology and ways to solve them]. Zhurnal Hatsional’noi

Akademii medychnykh nauk Ukrainy. 2011;17(1):19-25.

(in Ukranian)

Meschia JF, Brott T. Ischaemic stroke. Eur J Neurol.

;25(1):35-40. doi: 10.1111/ene.13409

Polishchuk ME, Shchehlov DV, Goncharuk OM, Mamonova

MYu, Konotopchyk SV. Suchasnyi stan ta perspektyvy likuvannia

insul’tiv v Ukraini [Current status and prospects stroke treatment

in Ukraine]. Endovascular Neuroradiology. 2017;4:14-22. doi:

26683/2304-9359-2017-4(22)-14-22 (in Ukranian)

George MG. Risk Factors for Ischemic Stroke in Younger Adults:

A Focused Update. Stroke. 2020;51(3):729-35. doi: 10.1161/

STROKEAHA.119.024156

Penlioglou T, Stoian AP, Papanas N. Diabetes, Vascular Aging and

Stroke: Old Dogs, New Tricks? J Clin Med [Internet]. 2021[cited

Jun 24];10(19):4620. Available from: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC8509285/pdf/jcm-10-04620.pdf doi:

3390/jcm10194620

Khalid Al- Rubeaan, Fawaz Al- Hussain, Amira M. Youssef,

Shazia N. Subhani, Ahmad H. Al- Sharqawi, Heba M. Ibrahim.

Ischemic Stroke and Its Risk Factors in a Registry- Based Large

Cross- Sectional Diabetic Cohort in a Country Facing a Diabetes

Epidemic [Internet]. Journal of Diabetes Research. 2016 [cited

Jul 9];2016. Available from: https://www.hindawi.com/

journals/jdr/2016/4132589/ doi: 10.1155/2016/4132589

Yamagishi SI, Nakamura N, Suematsu M, Kaseda K, Matsui

T. Advanced Glycation End Products: A Molecular Target for

Vascular Complications in Diabetes. Mol Med. 2015;21(Suppl 1):

S32-40. doi: 10.2119/molmed.2015.00067

Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS.

Improved cerebral energetics and ketone body metabolism in db/

db mice. J Cereb Blood Flow Metab. 2017;37(3):1137-47. doi:

1177/0271678X16684154

Boychuk TM, Tkachuk SS, Nika OM. Modyfikuiuchyi vplyv

tsukrovoho diabetu na reaktsiiu r53-zalezhnykh proapoptychnykh

mekhanizmiv hipokampa schuriv u dynamitsi ishemichnoreperfuziinoho poshkodzhennia holovnoho mozku [The modifying

effect of diabetes mellitus on the reaction of р53-dependent

proapoptotic mechanisms of hippocampus of rats in dynamic of

ischemic- reperfusion damage of brain]. Pathologia. 2016;38:9-13.

doi: 10.14739/2310-1237.2016.3.86935 (in Ukranian)

Boychuk TM, Nika OM, Tkachuk SS. Spivvidnoshennia r53-prota Bcl-2-antyapoptychnoi aktyvnosti v hipokampi schuriv z

ishemiieiu- reperfuziieiu holovnoho mozku ta eksperymental’nym

diabetom [The ratio of p53-proapoptotic and Bcl-2 antiapoptotic

activity in the hippocampus of rats with brain ischemiareperfusion and experimental diabetes]. Fiziologichnyi Zhurnal.

;62(6):25-34. doi: 10.15407/fz62.06.025 (in Ukranian)

Eriksson M, Carlberg B, Eliasson M. The disparity in long-term

survival after a first stroke in patients with and without diabetes

persists: the northern Sweden MONICA study. Cerebrovasc Dis.

;34(2):153-60. doi: 10.1159/000339763

Salinero- Fort MA, Mostaza J, Lahoz C, Cárdenas- Valladolid J,

Vicente- Díez JI, Gómez- Campelo P, et al. All-cause mortality

and cardiovascular events in a Spanish nonagenarian cohort

according to type 2 diabetes mellitus status and established

cardiovascular disease. BMC Geriatr [Internet]. 2022[cited 2022

Jun 21];22(1):224. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC8931574/pdf/12877_2022_Article_2893.pdf

doi: 10.1186/s12877-022-02893-z

Akpalu J, Yawson AE, Osei- Poku F, Atiase Y, Yorke E, Adjei P,

et al. Stroke Outcome and Determinants among Patients with and

without Diabetes in a Tertiary Hospital in Ghana. Stroke Res Treat

[Internet]. 2018[cited 2022 Jun 24];2018:7521351. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157204/pdf/

SRT2018-7521351.pdf doi: 10.1155/2018/7521351

Shou J, Zhou L, Zhu S, Zhang X. Diabetes is an Independent Risk

Factor for Stroke Recurrence in Stroke Patients: A Meta-analysis.

J Stroke Cerebrovasc Dis. 2015;24(9):1961-8. doi: 10.1016/j.

jstrokecerebrovasdis.2015.04.004

Zhu S, McClure LA, Lau H, Romero JR, White CL, Babikian V,

Nguyen T, Benavente OR, Kase CS, Pikula A. Recurrent vascular

events in lacunar stroke patients with metabolic syndrome and/or

diabetes. Neurology. 2015 Sep 15; 85(11):935-41.

Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB,

et al. IDF Diabetes Atlas: Global, regional and country- level diabetes

prevalence estimates for 2021 and projections for 2045. Diabetes

Res Clin Pract [Internet]. 2022[cited 2022 Jun 24];183:109119.

Available from: https://www.diabetesresearchclinicalpractice.

com/article/S0168-8227(21)00478-2/fulltext doi: 10.1016/j.

diabres.2021.109119

Banks WA. The source of cerebral insulin. Eur J Pharmacol.

;490(1-3):5-12. doi: 10.1016/j.ejphar.2004.02.040

Lioutas VA, Alfaro- Martinez F, Bedoya F, Chung CC, Pimentel

DA, Novak V. Intranasal Insulin and Insulin- Like Growth Factor 1

as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res.

;6(4):264-75. doi: 10.1007/s12975-015-0409-7

Ueda H. Prothymosin alpha plays a key role in cell death modeswitch, a new concept for neuroprotective mechanisms in stroke.

Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):315-23.

doi: 10.1007/s00210-007-0254-7

Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous

system: more than just a peripheral hormone. J Aging Res

[Internet]. 2012[cited 2022 Jun 21];2012:384017. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303591/pdf/

JAR2012-384017.pdf doi: 10.1155/2012/384017

Kleinridders A. Deciphering Brain Insulin Receptor and Insulin‐

Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol

[Internet]. 2016[cited 2022 Jun 23];28(11):10.1111/jne.12433.

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5129466/pdf/JNE-28-0.pdf doi: 10.1111/jne.12433

Garwood CJ, Ratcliffe LE, Morgan SV, Simpson JE, Owens H,

Vazquez- Villaseñor I, et al. Insulin and IGF1 signalling pathways in

human astrocytes in vitro and in vivo; characterisation, subcellular

localisation and modulation of the receptors. Mol Brain. 2015;8:51.

doi: 10.1186/s13041-015-0138-6

Shemesh E, Rudich A, Harman- Boehm I, Cukierman- Yaffe

T. Effect of intranasal insulin on cognitive function: a systematic

review. J Clin Endocrinol Metab. 2012;97(2):366-76. doi: 10.1210/

jc.2011-1802

Hirvonen J, Virtanen KA, Nummenmaa L, Hannukainen JC, Honka

MJ, Bucci M, et al. Effects of Insulin on Brain Glucose Metabolism

in Impaired Glucose Tolerance. Diabetes. 2011;60(2):443-7. doi:

2337/db10-0940

Loh K, Zhang L, Brandon A, Wang Q, Begg D, Qi Y, et al. Insulin

controls food intake and energy balance via NPY neurons. Mol

Metab. 2017;6(6):574-84. doi: 10.1016/j.molmet.2017.03.013

De Geyter D, Stoop W, Sarre S, De Keyser J, Kooijman

R. Neuroprotective efficacy of subcutaneous insulin-like growth

factor- I administration in normotensive and hypertensive rats

with an ischemic stroke. Neuroscience. 2013;250:253-62. doi:

1016/j.neuroscience.2013.07.016

Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA.

Insulin-like Signaling Promotes Glial Phagocytic Clearance of

Degenerating Axons through Regulation of Draper. Cell Rep.

;16(7):1838-50. doi: 10.1016/j.celrep.2016.07.022

Grote CW, Wright DE. A Role for Insulin in Diabetic

Neuropathy. Front Neurosci [Internet]. 2016[cited 2022 Jun

;10:581. Available from: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC5179551/pdf/fnins-10-00581.pdf doi: 10.3389/

fnins.2016.00581

Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson

IC, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during

Early Postnatal Life in Mice. PLoS One [Internet]. 2017[cited 2022

Jun 24];12(1): e0170083. Available from: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC5226784/pdf/pone.0170083.pdf doi:

1371/journal.pone.0170083

Zemva J, Schubert M. Central insulin and insulin-like growth

factor-1 signaling: implications for diabetes associated

dementia. Curr Diabetes Rev. 2011;7(5):356-66. doi:

2174/157339911797415594

Kumar A, Negi G, Sharma SS. Suppression of NF-κB and NF-κB

regulated oxidative stress and neuroinflammation by BAY 11-7082

(IκB phosphorylation inhibitor) in experimental diabetic neuropathy.

Biochimie. 2012;94(5):1158-65. doi: 10.1016/j.biochi.2012.01.023

Kandimalla R, Dash S, Kalita S, Choudhury B, Malampati S,

Devi R, et al. Bioactive Fraction of Annona reticulata Bark (or)

Ziziphus jujuba Root Bark along with Insulin Attenuates Painful

Diabetic Neuropathy through Inhibiting NF-κB Inflammatory

Cascade. Front Cell Neurosci [Internet]. 2017[cited 2022 Jun

;11:73. Available from: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC5361110/pdf/fncel-11-00073.pdf doi: 10.3389/

fncel.2017.00073

Blázquez E, Velázquez E, Hurtado- Carneiro V, Ruiz- Albusac

JM. Insulin in the Brain: Its Pathophysiological Implications for

States Related with Central Insulin Resistance, Type 2 Diabetes

and Alzheimer’s Disease. Front Endocrinol (Lausanne) [Internet].

[cited 2022 Jun 21];5:161. Available from: https://www.ncbi.

nlm.nih.gov/pmc/articles/PMC4191295/pdf/fendo-05-00161.pdf

doi: 10.3389/fendo.2014.00161

Najem D, Bamji- Mirza M, Chang N, Liu QY, Zhang W. Insulin

resistance, neuroinflammation, and Alzheimer’s disease. Rev

Neurosci 2014;25(4):509-25. doi: 10.1515/revneuro-2013-0050

Shukla V, Shakya AK, Perez- Pinzon MA, Dave KR. Cerebral

ischemic damage in diabetes: an inflammatory perspective. J

Neuroinflammation [Internet]. 2017[cited 2022 Jun 24];14(1):21.

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC5260103/pdf/12974_2016_Article_774.pdf doi: 10.1186/

s12974-016-0774-5

Hung LM, Huang JP, Liao JM, Yang MH, Li DE, Day YJ, et al.

Insulin renders diabetic rats resistant to acute ischemic stroke

by arresting nitric oxide reaction with superoxide to form

peroxynitrite. J Biomed Sci [Internet]. 2014[cited 2022 Jun

;21(1):92. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC4266964/pdf/12929_2014_Article_92.pdf doi:

1186/s12929-014-0092-0

Tiwari V, Kuhad A, Chopra K. Emblica officinalis corrects

functional, biochemical and molecular deficits in experimental

diabetic neuropathy by targeting the oxido- nitrosative

stress mediated inflammatory cascade. Phytother Res.

;25(10):1527-36. doi: 10.1002/ptr.3440

Huang SS, Lu YJ, Huang JP, Wu YT, Day YJ, Hung LJ. The essential

role of endothelial nitric oxide synthase activation in insulinmediated neuroprotection against ischemic stroke in diabetes. J

Vasc Surg. 2014;59(2):483-91. doi: 10.1016/j.jvs.2013.03.023

Schiling TM, de Sá DSF, Westehausen R, Strlzyk F, Lara MF,

Halschmid M, et al. Intranasal insulin increases regional cerebral

blood flow in the insular cortex in men independently of cortisol

manipulation. Hum Brain Mapp. 2014;35(5):1944-56. doi:

1002/hbm.22304

Chien CT, Jou MJ, Cheng TY, Yang CH, Yu TY, Li PC.

Exendin-4-loaded PLGA microspheres relieve cerebral schemia/

reperfusion injury and neurologic deficits through long-lasting

bioactivity- mediated phosphorylated Akt/eNOS signaling in rats.

J Cereb Blood Flow Metab. 2015;35(11):1790-803. doi: 10.1038/

jcbfm.2015.126

Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and

back again. Pharmacol Ther. 2012;136(1):82-93. doi: 10.1016/j.

pharmthera.2012.07.006

Zemva J, Schubert M. The role of neuronal insulin/insulin-like

growth factor-1 signaling for the pathogenesis of Alzheimer’s

disease: possible therapeutic implications. CNS Neurol Disord Drug

Targets. 2014;13(2):322-37. doi: 10.2174/18715273113126660141

Lioutas VA, Novak V. Intranasal insulin neuroprotection in

ischemic stroke. Neural Regen Res. 2016;11(3):400-1. doi:

4103/1673-5374.179040

Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC. Insulin

neuroprotection against oxidative stress is mediated by Akt and

GSK-3beta signaling pathways and changes in protein expression.

Biochim Biophys Acta. 2008;1783(6):994-1002. doi: 10.1016/j.

bbamcr.2008.02.016

Simão F, Matté A, Pagnussat AS, Netto CA, Salbego CG.

Resveratrol prevents CA1 neurons against ischemic injury by

parallel modulation of both GSK-3β and CREB through PI3-K/Akt

pathways. Eur J Neurosci. 2012;36(7):2899-905. doi: 10.1111/j.14

-9568.2012.08229.x

##submission.downloads##

Опубліковано

2022-07-13

Номер

Розділ

Статті