РОЛЬ СИГНАЛЬНИХ ШЛЯХІВ ІНСУЛІНУ В ЗАБЕЗПЕЧЕННІ ФІЗІОЛОГІЧНОГО СТАНУ ГОЛОВНОГО МОЗКУ ТА НЕЙРОПРОТЕКЦІЇ ПРИ ГОСТРИХ ПОРУШЕННЯХ МОЗКОВОГО КРОВООБІГУ
DOI:
https://doi.org/10.24061/1727-4338.XXI.2.80.2022.10Ключові слова:
мозок, сигнальні шляхи інсуліну, ішемія-реперфузія головного мозкуАнотація
Мета роботи – здійснити аналіз даних світової літератури стосовно ролі
сигнальних шляхів інсуліну у функціонуванні головного мозку за умов норми
та гострого порушення церебрального кровобігу.
Висновки. Згідно даних літератури множинні ефекти інсуліну в головному мозку
забезпечуються наявністю плейотропних сигнальних шляхів цього гормону.
Інсулін необхідний для підтримання нормального морфофункціонального стану
нервової тканини. За умов гострого порушення церебрального кровообігу усі відомі
насьогодніцеребральніефектиінсулінуспрямованіназабезпеченнянейропротекції,
яка реалізується полідромними механізмами.
Посилання
Ding Q, Liu S, Yao Y, Liu H, Cai T, Han L. Global, Regional,
and National Burden of Ischemic Stroke, 1990-2019. Neurology [Internet]. 2022[cited 2022 Jun 23];98(3): e279-90. Available
from: https://n.neurology.org/content/98/3/e279.long doi: 10.1212/
WNL.0000000000013115
Waldman A, Rawal AR. Stroke Center Certification [Internet].
Treasure Island (FL): StatPearls Publishing; 2019[cited 2022 Jun 21].
Available from: https://www.ncbi.nlm.nih.gov/books/NBK535392/
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang
AR, Cheng S, et al. Heart Disease and Stroke Statistics-2018
Update: A Report From the American Heart Association.
Circulation [Internet]. 2018[cited 2022 Jun 21];137(12): e67-e492.
Available from: https://www.ahajournals.org/doi/pdf/10.1161/
CIR.0000000000000558 doi: 10.1161/cir.0000000000000558
Mischenko TS. Analiz epidemiolohii tserebrovaskuliarnykh
khvorob v Ukraini [Analysis of the epidemiology of cerebrovascular
diseases in Ukraine]. Sudynni zakhvoriuvannia holovnoho mozku.
;3:2-9. (in Ukranian)
Zozulia YuP, Mischenko TS. Problemy sudynno- tserebral’noi
patolohii ta shliakhy yikh vyrishennia [Problems of vascular and
cerebral pathology and ways to solve them]. Zhurnal Hatsional’noi
Akademii medychnykh nauk Ukrainy. 2011;17(1):19-25.
(in Ukranian)
Meschia JF, Brott T. Ischaemic stroke. Eur J Neurol.
;25(1):35-40. doi: 10.1111/ene.13409
Polishchuk ME, Shchehlov DV, Goncharuk OM, Mamonova
MYu, Konotopchyk SV. Suchasnyi stan ta perspektyvy likuvannia
insul’tiv v Ukraini [Current status and prospects stroke treatment
in Ukraine]. Endovascular Neuroradiology. 2017;4:14-22. doi:
26683/2304-9359-2017-4(22)-14-22 (in Ukranian)
George MG. Risk Factors for Ischemic Stroke in Younger Adults:
A Focused Update. Stroke. 2020;51(3):729-35. doi: 10.1161/
STROKEAHA.119.024156
Penlioglou T, Stoian AP, Papanas N. Diabetes, Vascular Aging and
Stroke: Old Dogs, New Tricks? J Clin Med [Internet]. 2021[cited
Jun 24];10(19):4620. Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC8509285/pdf/jcm-10-04620.pdf doi:
3390/jcm10194620
Khalid Al- Rubeaan, Fawaz Al- Hussain, Amira M. Youssef,
Shazia N. Subhani, Ahmad H. Al- Sharqawi, Heba M. Ibrahim.
Ischemic Stroke and Its Risk Factors in a Registry- Based Large
Cross- Sectional Diabetic Cohort in a Country Facing a Diabetes
Epidemic [Internet]. Journal of Diabetes Research. 2016 [cited
Jul 9];2016. Available from: https://www.hindawi.com/
journals/jdr/2016/4132589/ doi: 10.1155/2016/4132589
Yamagishi SI, Nakamura N, Suematsu M, Kaseda K, Matsui
T. Advanced Glycation End Products: A Molecular Target for
Vascular Complications in Diabetes. Mol Med. 2015;21(Suppl 1):
S32-40. doi: 10.2119/molmed.2015.00067
Andersen JV, Christensen SK, Nissen JD, Waagepetersen HS.
Improved cerebral energetics and ketone body metabolism in db/
db mice. J Cereb Blood Flow Metab. 2017;37(3):1137-47. doi:
1177/0271678X16684154
Boychuk TM, Tkachuk SS, Nika OM. Modyfikuiuchyi vplyv
tsukrovoho diabetu na reaktsiiu r53-zalezhnykh proapoptychnykh
mekhanizmiv hipokampa schuriv u dynamitsi ishemichnoreperfuziinoho poshkodzhennia holovnoho mozku [The modifying
effect of diabetes mellitus on the reaction of р53-dependent
proapoptotic mechanisms of hippocampus of rats in dynamic of
ischemic- reperfusion damage of brain]. Pathologia. 2016;38:9-13.
doi: 10.14739/2310-1237.2016.3.86935 (in Ukranian)
Boychuk TM, Nika OM, Tkachuk SS. Spivvidnoshennia r53-prota Bcl-2-antyapoptychnoi aktyvnosti v hipokampi schuriv z
ishemiieiu- reperfuziieiu holovnoho mozku ta eksperymental’nym
diabetom [The ratio of p53-proapoptotic and Bcl-2 antiapoptotic
activity in the hippocampus of rats with brain ischemiareperfusion and experimental diabetes]. Fiziologichnyi Zhurnal.
;62(6):25-34. doi: 10.15407/fz62.06.025 (in Ukranian)
Eriksson M, Carlberg B, Eliasson M. The disparity in long-term
survival after a first stroke in patients with and without diabetes
persists: the northern Sweden MONICA study. Cerebrovasc Dis.
;34(2):153-60. doi: 10.1159/000339763
Salinero- Fort MA, Mostaza J, Lahoz C, Cárdenas- Valladolid J,
Vicente- Díez JI, Gómez- Campelo P, et al. All-cause mortality
and cardiovascular events in a Spanish nonagenarian cohort
according to type 2 diabetes mellitus status and established
cardiovascular disease. BMC Geriatr [Internet]. 2022[cited 2022
Jun 21];22(1):224. Available from: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC8931574/pdf/12877_2022_Article_2893.pdf
doi: 10.1186/s12877-022-02893-z
Akpalu J, Yawson AE, Osei- Poku F, Atiase Y, Yorke E, Adjei P,
et al. Stroke Outcome and Determinants among Patients with and
without Diabetes in a Tertiary Hospital in Ghana. Stroke Res Treat
[Internet]. 2018[cited 2022 Jun 24];2018:7521351. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157204/pdf/
SRT2018-7521351.pdf doi: 10.1155/2018/7521351
Shou J, Zhou L, Zhu S, Zhang X. Diabetes is an Independent Risk
Factor for Stroke Recurrence in Stroke Patients: A Meta-analysis.
J Stroke Cerebrovasc Dis. 2015;24(9):1961-8. doi: 10.1016/j.
jstrokecerebrovasdis.2015.04.004
Zhu S, McClure LA, Lau H, Romero JR, White CL, Babikian V,
Nguyen T, Benavente OR, Kase CS, Pikula A. Recurrent vascular
events in lacunar stroke patients with metabolic syndrome and/or
diabetes. Neurology. 2015 Sep 15; 85(11):935-41.
Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB,
et al. IDF Diabetes Atlas: Global, regional and country- level diabetes
prevalence estimates for 2021 and projections for 2045. Diabetes
Res Clin Pract [Internet]. 2022[cited 2022 Jun 24];183:109119.
Available from: https://www.diabetesresearchclinicalpractice.
com/article/S0168-8227(21)00478-2/fulltext doi: 10.1016/j.
diabres.2021.109119
Banks WA. The source of cerebral insulin. Eur J Pharmacol.
;490(1-3):5-12. doi: 10.1016/j.ejphar.2004.02.040
Lioutas VA, Alfaro- Martinez F, Bedoya F, Chung CC, Pimentel
DA, Novak V. Intranasal Insulin and Insulin- Like Growth Factor 1
as Neuroprotectants in Acute Ischemic Stroke. Transl Stroke Res.
;6(4):264-75. doi: 10.1007/s12975-015-0409-7
Ueda H. Prothymosin alpha plays a key role in cell death modeswitch, a new concept for neuroprotective mechanisms in stroke.
Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):315-23.
doi: 10.1007/s00210-007-0254-7
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous
system: more than just a peripheral hormone. J Aging Res
[Internet]. 2012[cited 2022 Jun 21];2012:384017. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303591/pdf/
JAR2012-384017.pdf doi: 10.1155/2012/384017
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin‐
Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol
[Internet]. 2016[cited 2022 Jun 23];28(11):10.1111/jne.12433.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5129466/pdf/JNE-28-0.pdf doi: 10.1111/jne.12433
Garwood CJ, Ratcliffe LE, Morgan SV, Simpson JE, Owens H,
Vazquez- Villaseñor I, et al. Insulin and IGF1 signalling pathways in
human astrocytes in vitro and in vivo; characterisation, subcellular
localisation and modulation of the receptors. Mol Brain. 2015;8:51.
doi: 10.1186/s13041-015-0138-6
Shemesh E, Rudich A, Harman- Boehm I, Cukierman- Yaffe
T. Effect of intranasal insulin on cognitive function: a systematic
review. J Clin Endocrinol Metab. 2012;97(2):366-76. doi: 10.1210/
jc.2011-1802
Hirvonen J, Virtanen KA, Nummenmaa L, Hannukainen JC, Honka
MJ, Bucci M, et al. Effects of Insulin on Brain Glucose Metabolism
in Impaired Glucose Tolerance. Diabetes. 2011;60(2):443-7. doi:
2337/db10-0940
Loh K, Zhang L, Brandon A, Wang Q, Begg D, Qi Y, et al. Insulin
controls food intake and energy balance via NPY neurons. Mol
Metab. 2017;6(6):574-84. doi: 10.1016/j.molmet.2017.03.013
De Geyter D, Stoop W, Sarre S, De Keyser J, Kooijman
R. Neuroprotective efficacy of subcutaneous insulin-like growth
factor- I administration in normotensive and hypertensive rats
with an ischemic stroke. Neuroscience. 2013;250:253-62. doi:
1016/j.neuroscience.2013.07.016
Musashe DT, Purice MD, Speese SD, Doherty J, Logan MA.
Insulin-like Signaling Promotes Glial Phagocytic Clearance of
Degenerating Axons through Regulation of Draper. Cell Rep.
;16(7):1838-50. doi: 10.1016/j.celrep.2016.07.022
Grote CW, Wright DE. A Role for Insulin in Diabetic
Neuropathy. Front Neurosci [Internet]. 2016[cited 2022 Jun
;10:581. Available from: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5179551/pdf/fnins-10-00581.pdf doi: 10.3389/
fnins.2016.00581
Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson
IC, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during
Early Postnatal Life in Mice. PLoS One [Internet]. 2017[cited 2022
Jun 24];12(1): e0170083. Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC5226784/pdf/pone.0170083.pdf doi:
1371/journal.pone.0170083
Zemva J, Schubert M. Central insulin and insulin-like growth
factor-1 signaling: implications for diabetes associated
dementia. Curr Diabetes Rev. 2011;7(5):356-66. doi:
2174/157339911797415594
Kumar A, Negi G, Sharma SS. Suppression of NF-κB and NF-κB
regulated oxidative stress and neuroinflammation by BAY 11-7082
(IκB phosphorylation inhibitor) in experimental diabetic neuropathy.
Biochimie. 2012;94(5):1158-65. doi: 10.1016/j.biochi.2012.01.023
Kandimalla R, Dash S, Kalita S, Choudhury B, Malampati S,
Devi R, et al. Bioactive Fraction of Annona reticulata Bark (or)
Ziziphus jujuba Root Bark along with Insulin Attenuates Painful
Diabetic Neuropathy through Inhibiting NF-κB Inflammatory
Cascade. Front Cell Neurosci [Internet]. 2017[cited 2022 Jun
;11:73. Available from: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5361110/pdf/fncel-11-00073.pdf doi: 10.3389/
fncel.2017.00073
Blázquez E, Velázquez E, Hurtado- Carneiro V, Ruiz- Albusac
JM. Insulin in the Brain: Its Pathophysiological Implications for
States Related with Central Insulin Resistance, Type 2 Diabetes
and Alzheimer’s Disease. Front Endocrinol (Lausanne) [Internet].
[cited 2022 Jun 21];5:161. Available from: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC4191295/pdf/fendo-05-00161.pdf
doi: 10.3389/fendo.2014.00161
Najem D, Bamji- Mirza M, Chang N, Liu QY, Zhang W. Insulin
resistance, neuroinflammation, and Alzheimer’s disease. Rev
Neurosci 2014;25(4):509-25. doi: 10.1515/revneuro-2013-0050
Shukla V, Shakya AK, Perez- Pinzon MA, Dave KR. Cerebral
ischemic damage in diabetes: an inflammatory perspective. J
Neuroinflammation [Internet]. 2017[cited 2022 Jun 24];14(1):21.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5260103/pdf/12974_2016_Article_774.pdf doi: 10.1186/
s12974-016-0774-5
Hung LM, Huang JP, Liao JM, Yang MH, Li DE, Day YJ, et al.
Insulin renders diabetic rats resistant to acute ischemic stroke
by arresting nitric oxide reaction with superoxide to form
peroxynitrite. J Biomed Sci [Internet]. 2014[cited 2022 Jun
;21(1):92. Available from: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4266964/pdf/12929_2014_Article_92.pdf doi:
1186/s12929-014-0092-0
Tiwari V, Kuhad A, Chopra K. Emblica officinalis corrects
functional, biochemical and molecular deficits in experimental
diabetic neuropathy by targeting the oxido- nitrosative
stress mediated inflammatory cascade. Phytother Res.
;25(10):1527-36. doi: 10.1002/ptr.3440
Huang SS, Lu YJ, Huang JP, Wu YT, Day YJ, Hung LJ. The essential
role of endothelial nitric oxide synthase activation in insulinmediated neuroprotection against ischemic stroke in diabetes. J
Vasc Surg. 2014;59(2):483-91. doi: 10.1016/j.jvs.2013.03.023
Schiling TM, de Sá DSF, Westehausen R, Strlzyk F, Lara MF,
Halschmid M, et al. Intranasal insulin increases regional cerebral
blood flow in the insular cortex in men independently of cortisol
manipulation. Hum Brain Mapp. 2014;35(5):1944-56. doi:
1002/hbm.22304
Chien CT, Jou MJ, Cheng TY, Yang CH, Yu TY, Li PC.
Exendin-4-loaded PLGA microspheres relieve cerebral schemia/
reperfusion injury and neurologic deficits through long-lasting
bioactivity- mediated phosphorylated Akt/eNOS signaling in rats.
J Cereb Blood Flow Metab. 2015;35(11):1790-803. doi: 10.1038/
jcbfm.2015.126
Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and
back again. Pharmacol Ther. 2012;136(1):82-93. doi: 10.1016/j.
pharmthera.2012.07.006
Zemva J, Schubert M. The role of neuronal insulin/insulin-like
growth factor-1 signaling for the pathogenesis of Alzheimer’s
disease: possible therapeutic implications. CNS Neurol Disord Drug
Targets. 2014;13(2):322-37. doi: 10.2174/18715273113126660141
Lioutas VA, Novak V. Intranasal insulin neuroprotection in
ischemic stroke. Neural Regen Res. 2016;11(3):400-1. doi:
4103/1673-5374.179040
Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC. Insulin
neuroprotection against oxidative stress is mediated by Akt and
GSK-3beta signaling pathways and changes in protein expression.
Biochim Biophys Acta. 2008;1783(6):994-1002. doi: 10.1016/j.
bbamcr.2008.02.016
Simão F, Matté A, Pagnussat AS, Netto CA, Salbego CG.
Resveratrol prevents CA1 neurons against ischemic injury by
parallel modulation of both GSK-3β and CREB through PI3-K/Akt
pathways. Eur J Neurosci. 2012;36(7):2899-905. doi: 10.1111/j.14
-9568.2012.08229.x
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2022 О.В. Ткачук, С.С. Ткачук, М.А. Повар, С.О. Кисилиця, В.Д. Сорохан, О.І. Денисенко, М. Д. Перепелюк
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Часопис користується «Типовим шаблоном положення про авторські права».