РОЛЬ ШВАННІВСЬКИХ КЛІТИН В РЕГЕНЕРАЦІЇ ПЕРИФЕРИЧНИХ НЕРВІВ (МОЛЕКУЛЯРНО-МОРФОЛОГІЧНІ АСПЕКТИ)
DOI:
https://doi.org/10.24061/1727-4338.XXII.4.86.2023.08Ключові слова:
нерв, шваннівські клітини, регенераціяАнотація
Метароботи – здійснити аналіз сучасної наукової літературистосовновизначення
ролі шваннівських клітин у регенерації периферичних нервів.
Висновки. 1. Дисфункція шваннівських клітин є важливим фактором затримки,
авдеякихвипадках–івідсутностівідновленняфункціїпісляушкодженьпериферичних
нервів. 2. Сучасне лікування ушкоджених периферичних нервів має включати засоби,
спрямовані на активацію програми репарації в шваннівських клітинах, ініціацію
рекрутування макрофагів, стимулювання синтезу нейротрофічних факторів
нейролемоцитами та макрофагами, оптимізацію метаболізму та імунної
відповіді. 3. Використання генної інженерії для можливості впливу на гени,
що регулюють активність шваннівських клітин при травмах периферичних
нервів, є багатообіцяючою стратегією лікування цієї нозології. 4. Регенеративний
потенціал шваннівських клітин вселяє надію на значне розширення терапевтичних
можливостей при лікуванні ушкоджень периферичних нервів.
Посилання
Al- Hadeethi Y, Nagarajan A, Hanuman S, Mohammed H, Vetekar
AM, Thakur G, et al. Schwann cell-matrix coated PCL-MWCNT
multifunctional nanofibrous scaffolds for neural regeneration. RSC
Adv. 2023;13(2):1392-401. doi: 10.1039/d2ra05368c
Nevmerzhytska NM, Yaremenko LM, Chuhray SM, Grabovyi OM.
Metody likuvannia travm peryferychnoho nerva (ohlyad literatury)
[Treatment methods for peripheral nerve injuries (a literature
review)]. Zaporozhye medical journal. 2023;25(4):365-9.
doi: 10.14739/2310-1210.2023.4.273073 (in Ukranian)
Pan B, Guo D, Jing L, Li K, Li X, Li G, et al. Long noncoding
RNA Pvt1 promotes the proliferation and migration of Schwann
cells by sponging microRNA-214 and targeting c- Jun following
peripheral nerve injury. Neural Regen Res. 2023;18(5):1147-53.
doi: 10.4103/1673-5374.353497
Zhang H, Zhang Z, Lin H. Research progress on the reduced
neural repair ability of aging Schwann cells. Front Cell Neurosci
[Internet]. 2023[cited 2023 Dec 27];17:1228282. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398339/pdf/
fncel-17-1228282.pdf doi: 10.3389/fncel.2023.1228282
Wang ML, Rivlin M, Graham JG, Beredjiklian PK. Peripheral nerve
injury, scarring, and recovery. Connect Tissue Res. 2019;60(1):3-9.
doi: 10.1080/03008207.2018.1489381
Muppirala AN, Limbach LE, Bradford EF, Petersen SC.
Schwann cell development: From neural crest to myelin sheath.
Wiley Interdiscip Rev Dev Biol [Internet]. 2021[cited 2023 Dec
;10(5): e398. Available from: https://wires.onlinelibrary.wiley.
com/doi/10.1002/wdev.398 doi: 10.1002/wdev.398
Bosch- Queralt M, Fledrich R, Stassart RM. Schwann cell
functions in peripheral nerve development and repair.
Neurobiol Dis [Internet]. 2023[cited 2023 Dec 22];176:105952.
Available from: https://www.sciencedirect.com/science/
article/pii/S0969996122003448?via%3Dihub doi: 10.1016/j.
nbd.2022.105952
Wu Q, Xie J, Zhu X, He J. Runt-related transcription factor 3,
mediated by DNA-methyltransferase 1, regulated Schwann cell
proliferation and myelination during peripheral nerve regeneration
via JAK/STAT signaling pathway. Neurosci Res. 2023;192:1-10.
doi: 10.1016/j.neures.2023.01.008
Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct
axon regeneration within the peripheral nerve bridge. Glia.
;69(2):235-54. doi: 10.1002/glia.23892
Grabovyi OM, Nevmerzhytska NM, Alyokhin AB, Kostynskyi HB,
Rytikova NV. Moduliatsiya klitynnoho skladu reheneratsiinoi nevromy
deksametazonom ta hranulotsytarnym koloniiestymuiuiuchym
faktorom [Modulation of the tissue composition of regenerative
neuroma by dexamethasone and granulocyte colony- stimulating
factor]. Pathologia. 2023;20(2):118-25. doi: 10.14739/2310-
2023.2.285124 (in Ukranian)
Mao Q, Nguyen PD, Shanti RM, Shi S, Shakoori P, Zhang Q,
et al. Gingiva- Derived Mesenchymal Stem Cell- Extracellular
Vesicles Activate Schwann Cell Repair Phenotype and Promote
Nerve Regeneration. Tissue Eng Part A. 2019;25(11-12):887-900.
doi: 10.1089/ten.TEA.2018.0176
Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel
approaches using mesenchymal stem cells for curing peripheral
nerve injuries. Life Sci. 2019;221:99-108. doi: 10.1016/j.
lfs.2019.01.052
Bolívar S, Navarro X, Udina E. Schwann Cell Role in Selectivity
of Nerve Regeneration. Cells [Internet]. 2020[cited 2023 Dec
;9(9):2131. Available from: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC7563640/pdf/cells-09-02131.pdf doi: 10.3390/
cells9092131
Alvites R, Caseiro AR, Pedrosa SS, Branquinho MV, Ronchi G,
Geunda S, et al. Peripheral nerve injury and axonotmesis: State
of the art and recent advances, Cogent Medicine [Internet].
[cited 2023 Dec 23];5:1466404. Available from: https://
www.tandfonline.com/doi/full/10.1080/2331205X.2018.1466404
doi: 10.1080/2331205X.2018.1466404
Suzuki T, Kadoya K, Endo T, Iwasaki N. Molecular and Regenerative
Characterization of Repair and Non-repair Schwann Cells. Cell Mol
Neurobiol. 2023;43(5):2165-78. doi: 10.1007/s10571-022-01295-4
Grabovyi OM, Nevmerzhytska NM, Shepelev SE, Kondaurova HYu.
Dexametasone and granulosite colony stimulating factor change the
regeneration nevroma morphology. World of Medicine and Biology.
;4:187-92. doi: 10.26724/2079-8334-2023-4-86-187-192
Huang B, Jiang Y, Zhang L, Yang B, Guo Y, Yang X, et al.
Low-intensity pulsed ultrasound promotes proliferation and
myelinating genes expression of Schwann cells through NRG1/
ErbB signaling pathway. Tissue Cell [Internet]. 2023[cited 2023
Dec 28];80:101985. Available from: https://www.sciencedirect.
com/science/article/abs/pii/S0040816622002579?via%3Dihub
doi: 10.1016/j.tice.2022.101985
Li Y, Cai M, Feng Y, Yung B, Wang Y, Gao N, et al. Effect of lncRNA
H19 on nerve degeneration and regeneration after sciatic nerve injury
in rats. Dev Neurobiol. 2022;82(1):98-111. doi: 10.1002/dneu.22861
Walker CL. Progress in perisynaptic Schwann cell and
neuromuscular junction research. Neural Regen Res.
;17(6):1273-4. doi: 10.4103/1673-5374.327334
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, et al.
Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol
[Internet]. 2023[cited 2023 Dec 22];956:175955. Available
from: https://www.sciencedirect.com/science/article/abs/pii/
S0014299923004673?via%3Dihub doi: 10.1016/j.ejphar.2023.175955
Nocera G, Jacob C. Mechanisms of Schwann cell plasticity
involved in peripheral nerve repair after injury. Cell Mol Life Sci.
;77(20):3977-989. doi: 10.1007/s00018-020-03516-9
Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C,
et al. Microglia facilitate repair of demyelinated lesions via postsqualene sterol synthesis. Nature Neuroscience. 2021;24(1):47-60.
doi: 10.1038/s41593-020-00757-6
Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation.
Int Journal Mol Sci [Internet]. 2020[cited 2023 Dec 29];21(22):8652.
Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7697710/pdf/ijms-21-08652.pdf doi: 10.3390/ijms21228652
Carr MJ, Johnston AP. Schwann cells as drivers of tissue repair and
regeneration. Curr Opin Neurobiol. 2017;47:52-7. doi: 10.1016/j.
conb.2017.09.003
Kaiser R, Ullas G, Havránek P, Homolková H, Miletín J, Tichá P,
et al. Current concepts in peripheral nerve injury repair. Současný
pohled na ošetření poraněného periferního nervu. Acta Chir Plast.
;59(2):85-91.
Ning L, Sun H, Lelong T, Guilloteau R, Zhu N, Schreyer DJ, et
al. 3D bioprinting of scaffolds with living Schwann cells for
potential nerve tissue engineering applications. Biofabrication
[Internet]. 2018[cited 2023 Dec 29];10(3):035014. Available
from: https://iopscience.iop.org/article/10.1088/1758-5090/aacd30
doi: 10.1088/1758-5090/aacd30
Wong KM, Babetto E, Beirowski B. Axon degeneration: make the
Schwann cell great again. Neural Regen Res. 2017;12(4):518-24.
doi: 10.4103/1673-5374.205000
Liu B, Xin W, Tan JR, Zhu RP, Li T, Wang D, et al. Myelin sheath structure
and regeneration in peripheral nerve injury repair. Proc Natl Acad Sci U
S A. 2019;116(44):22347-52. doi: 10.1073/pnas.1910292116
Liu J, Ma X, Hu X, Wen J, Zhang H, Xu J, et al. Schwann
cell-specific RhoA knockout accelerates peripheral nerve
regeneration via promoting Schwann cell dedifferentiation. Glia.
;71(7):1715-28. doi: 10.1002/glia.24365
Liu YP, Luo ZR, Wang C, Cai H, Zhao TT, Li H, et al.
Electroacupuncture Promoted Nerve Repair After Peripheral
Nerve Injury by Regulating miR-1b and Its Target Brain- Derived
Neurotrophic Factor. Front Neurosci [Internet]. 2020[cited 2023
Dec 22];14:525144. Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC7550428/pdf/fnins-14-525144.pdf
doi: 10.3389/fnins.2020.525144
Liu YP, Xu P, Guo CX, Luo ZR, Zhu J, Mou FF, et al. miR-1b
overexpression suppressed proliferation and migration of RSC96
and increased cell apoptosis. Neurosci Lett. 2018;687:137-45.
doi: 10.1016/j.neulet.2018.09.041
Zhang Y, Shen Y, Zhao L, Zhao Q, Zhao L, Yi S. Transcription Factor
BCL11A Regulates Schwann Cell Behavior During Peripheral
Nerve Regeneration. Mol Neurobiol. 2023;60(9):5352-65.
doi: 10.1007/s12035-023-03432-6
Jiang J, Hu Y, Zhang B, Shi Y, Zhang J, Wu X, et al. MicroRNA-9 regulates
mammalian axon regeneration in peripheral nerve injury. Mol Pain
[Internet]. 2017[cited 2023 Dec 27];13:1744806917711612. Available
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464514/
pdf/10.1177_1744806917711612.pdf doi: 10.1177/1744806917711612
Zhou Z, Zhang N, Shi P, Xie J. Mechanism of miR-148b inhibiting
cell proliferation and migration of Schwann cells by regulating
CALR. Artif Cells Nanomed Biotechnol. 2019;47(1):1978-83.
doi: 10.1080/21691401.2019.1609008
Zou D, Zhou X, Liu J, Zhao Y, Jiang X. MiR-34a regulates Schwann
cell proliferation and migration by targeting CNTN2. Neuroreport.
;31(17):1180-8. doi: 10.1097/WNR.0000000000001539
He X, Zhang JN, Guo Y, Yang X, Huang Y, Hao D. METTL3-
Mediated N6-Methyladenosine Modification of lncRNA D26496
Suppresses the Proliferation and Migration of Schwann Cells
after Sciatic Nerve Injury. Mol Neurobiol. 2023;60(5):2413-25.
doi: 10.1007/s12035-023-03222-0
Ji XM, Wang SS, Cai XD, Wang XH, Liu QY, Wang P, et al.
Novel miRNA, miR-sc14, promotes Schwann cell proliferation
and migration. Neural Regen Res. 2019;14(9):1651-6.
doi: 10.4103/1673-5374.255996
Zhou Z, Qi D, Gan Q, Wang F, Qin B, Li J, et al. Studies on the
Regulatory Roles and Related Mechanisms of lncRNAs in the
Nervous System. Oxid Med Cell Longev [Internet]. 2021[cited 2023
Dec 22];2021:6657944. Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC7984887/pdf/OMCL2021-6657944.pdf
doi: 10.1155/2021/6657944
Ma Y, Zhai D, Zhang W, Zhang H, Dong L, Zhou Y, et al. Downregulation of long non-coding RNA MEG3 promotes Schwann cell
proliferation and migration and repairs sciatic nerve injury in rats.
J Cell Mol Med. 2020;24(13):7460-9. doi: 10.1111/jcmm.15368
Yao C, Wang Q, Wang Y, Wu J, Cao X, Lu Y, et al. Loc680254
regulates Schwann cell proliferation through Psrc1 and Ska1
as a microRNA sponge following sciatic nerve injury. Glia.
;69(10):2391-403. doi: 10.1002/glia.24045
Yin G, Peng Y, Lin Y, Wang P, Li Z, Wang R, et al. Long Noncoding RNA MSTRG.24008.1 Regulates the Regeneration of the
Sciatic Nerve via the miR-331-3p- NLRP3/MAL Axis. Front Cell
Dev Biol [Internet]. 2021[cited 2023 Dec 22];9:641603. Available
from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213216/
pdf/fcell-09-641603.pdf doi: 10.3389/fcell.2021.641603
Gao L, Feng A, Yue P, Liu Y, Zhou Q, Zang Q, et al. LncRNA
BC083743 Promotes the Proliferation of Schwann Cells and
Axon Regeneration Through miR-103-3p/BDNF After Sciatic
Nerve Crush. J Neuropathol Exp Neurol. 2020;79(10):1100-4.
doi: 10.1093/jnen/nlaa069
Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S. Dysregulated
miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and
Migration During Peripheral Nerve Regeneration. Mol Neurobiol.
;59(2):1058-72. doi: 10.1007/s12035-021-02589-2
Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P,
Millesi F, et al. How miRNAs Regulate Schwann Cells during
Peripheral Nerve Regeneration- A Systemic Review. Int J Mol Sci
[Internet]. 2022[cited 2023 Dec 27];23(7):3440. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999002/pdf/
ijms-23-03440.pdf doi: 10.3390/ijms23073440
Liu M, Li P, Jia Y, Cui Q, Zhang K, Jiang J. Role of Non-coding
RNAs in Axon Regeneration after Peripheral Nerve Injury. Int J
Biol Sci. 2022;18(8):3435-46. doi: 10.7150/ijbs.70290
Yi S, Wang QH, Zhao LL, Qin J, Wang YX, Yu B, et al.
miR-30c promotes Schwann cell remyelination following
peripheral nerve injury. Neural Regen Res. 2017;12(10):1708-15.
doi: 10.4103/1673-5374.217351
Sardella- Silva G, Mietto BS, Ribeiro- Resende VT. Four
Seasons for Schwann Cell Biology, Revisiting Key Periods:
Development, Homeostasis, Repair, and Aging. Biomolecules
[Internet]. 2021[cited 2023 Dec 22];11(12):1887. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699407/pdf/
biomolecules-11-01887.pdf doi: 10.3390/biom11121887
Demydchuk AS, Shamalo SM, Kotyk TL, Raskaliei TYa,
Raskaliei VB, Popadynets OH, et al. Morphological changes
in the peripheral nerves in trauma, mercury intoxication,
hypothyroidism, and their correction. Bulletin of problems
biology and medicine. 2023;2:374-80. doi: 10.29254/2077-4214-
-2-169-374-380
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2024 О.М. Грабовий, Л.М. Яременко, Б.М. Лузан, В.Ю. Молотковець, А.С. Демидчук
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Часопис користується «Типовим шаблоном положення про авторські права».