РОЛЬ ШВАННІВСЬКИХ КЛІТИН В РЕГЕНЕРАЦІЇ ПЕРИФЕРИЧНИХ НЕРВІВ (МОЛЕКУЛЯРНО-МОРФОЛОГІЧНІ АСПЕКТИ)

Автор(и)

  • О.М. Грабовий
  • Л.М. Яременко
  • Б.М. Лузан
  • В.Ю. Молотковець
  • А.С. Демидчук

DOI:

https://doi.org/10.24061/1727-4338.XXII.4.86.2023.08

Ключові слова:

нерв, шваннівські клітини, регенерація

Анотація

Метароботи – здійснити аналіз сучасної наукової літературистосовновизначення
ролі шваннівських клітин у регенерації периферичних нервів.
Висновки. 1. Дисфункція шваннівських клітин є важливим фактором затримки,
авдеякихвипадках–івідсутностівідновленняфункціїпісляушкодженьпериферичних
нервів. 2. Сучасне лікування ушкоджених периферичних нервів має включати засоби,
спрямовані на активацію програми репарації в шваннівських клітинах, ініціацію
рекрутування макрофагів, стимулювання синтезу нейротрофічних факторів
нейролемоцитами та макрофагами, оптимізацію метаболізму та імунної
відповіді. 3. Використання генної інженерії для можливості впливу на гени,
що регулюють активність шваннівських клітин при травмах периферичних
нервів, є багатообіцяючою стратегією лікування цієї нозології. 4. Регенеративний
потенціал шваннівських клітин вселяє надію на значне розширення терапевтичних
можливостей при лікуванні ушкоджень периферичних нервів.

Посилання

Al- Hadeethi Y, Nagarajan A, Hanuman S, Mohammed H, Vetekar

AM, Thakur G, et al. Schwann cell-matrix coated PCL-MWCNT

multifunctional nanofibrous scaffolds for neural regeneration. RSC

Adv. 2023;13(2):1392-401. doi: 10.1039/d2ra05368c

Nevmerzhytska NM, Yaremenko LM, Chuhray SM, Grabovyi OM.

Metody likuvannia travm peryferychnoho nerva (ohlyad literatury)

[Treatment methods for peripheral nerve injuries (a literature

review)]. Zaporozhye medical journal. 2023;25(4):365-9.

doi: 10.14739/2310-1210.2023.4.273073 (in Ukranian)

Pan B, Guo D, Jing L, Li K, Li X, Li G, et al. Long noncoding

RNA Pvt1 promotes the proliferation and migration of Schwann

cells by sponging microRNA-214 and targeting c- Jun following

peripheral nerve injury. Neural Regen Res. 2023;18(5):1147-53.

doi: 10.4103/1673-5374.353497

Zhang H, Zhang Z, Lin H. Research progress on the reduced

neural repair ability of aging Schwann cells. Front Cell Neurosci

[Internet]. 2023[cited 2023 Dec 27];17:1228282. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10398339/pdf/

fncel-17-1228282.pdf doi: 10.3389/fncel.2023.1228282

Wang ML, Rivlin M, Graham JG, Beredjiklian PK. Peripheral nerve

injury, scarring, and recovery. Connect Tissue Res. 2019;60(1):3-9.

doi: 10.1080/03008207.2018.1489381

Muppirala AN, Limbach LE, Bradford EF, Petersen SC.

Schwann cell development: From neural crest to myelin sheath.

Wiley Interdiscip Rev Dev Biol [Internet]. 2021[cited 2023 Dec

;10(5): e398. Available from: https://wires.onlinelibrary.wiley.

com/doi/10.1002/wdev.398 doi: 10.1002/wdev.398

Bosch- Queralt M, Fledrich R, Stassart RM. Schwann cell

functions in peripheral nerve development and repair.

Neurobiol Dis [Internet]. 2023[cited 2023 Dec 22];176:105952.

Available from: https://www.sciencedirect.com/science/

article/pii/S0969996122003448?via%3Dihub doi: 10.1016/j.

nbd.2022.105952

Wu Q, Xie J, Zhu X, He J. Runt-related transcription factor 3,

mediated by DNA-methyltransferase 1, regulated Schwann cell

proliferation and myelination during peripheral nerve regeneration

via JAK/STAT signaling pathway. Neurosci Res. 2023;192:1-10.

doi: 10.1016/j.neures.2023.01.008

Min Q, Parkinson DB, Dun XP. Migrating Schwann cells direct

axon regeneration within the peripheral nerve bridge. Glia.

;69(2):235-54. doi: 10.1002/glia.23892

Grabovyi OM, Nevmerzhytska NM, Alyokhin AB, Kostynskyi HB,

Rytikova NV. Moduliatsiya klitynnoho skladu reheneratsiinoi nevromy

deksametazonom ta hranulotsytarnym koloniiestymuiuiuchym

faktorom [Modulation of the tissue composition of regenerative

neuroma by dexamethasone and granulocyte colony- stimulating

factor]. Pathologia. 2023;20(2):118-25. doi: 10.14739/2310-

2023.2.285124 (in Ukranian)

Mao Q, Nguyen PD, Shanti RM, Shi S, Shakoori P, Zhang Q,

et al. Gingiva- Derived Mesenchymal Stem Cell- Extracellular

Vesicles Activate Schwann Cell Repair Phenotype and Promote

Nerve Regeneration. Tissue Eng Part A. 2019;25(11-12):887-900.

doi: 10.1089/ten.TEA.2018.0176

Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel

approaches using mesenchymal stem cells for curing peripheral

nerve injuries. Life Sci. 2019;221:99-108. doi: 10.1016/j.

lfs.2019.01.052

Bolívar S, Navarro X, Udina E. Schwann Cell Role in Selectivity

of Nerve Regeneration. Cells [Internet]. 2020[cited 2023 Dec

;9(9):2131. Available from: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC7563640/pdf/cells-09-02131.pdf doi: 10.3390/

cells9092131

Alvites R, Caseiro AR, Pedrosa SS, Branquinho MV, Ronchi G,

Geunda S, et al. Peripheral nerve injury and axonotmesis: State

of the art and recent advances, Cogent Medicine [Internet].

[cited 2023 Dec 23];5:1466404. Available from: https://

www.tandfonline.com/doi/full/10.1080/2331205X.2018.1466404

doi: 10.1080/2331205X.2018.1466404

Suzuki T, Kadoya K, Endo T, Iwasaki N. Molecular and Regenerative

Characterization of Repair and Non-repair Schwann Cells. Cell Mol

Neurobiol. 2023;43(5):2165-78. doi: 10.1007/s10571-022-01295-4

Grabovyi OM, Nevmerzhytska NM, Shepelev SE, Kondaurova HYu.

Dexametasone and granulosite colony stimulating factor change the

regeneration nevroma morphology. World of Medicine and Biology.

;4:187-92. doi: 10.26724/2079-8334-2023-4-86-187-192

Huang B, Jiang Y, Zhang L, Yang B, Guo Y, Yang X, et al.

Low-intensity pulsed ultrasound promotes proliferation and

myelinating genes expression of Schwann cells through NRG1/

ErbB signaling pathway. Tissue Cell [Internet]. 2023[cited 2023

Dec 28];80:101985. Available from: https://www.sciencedirect.

com/science/article/abs/pii/S0040816622002579?via%3Dihub

doi: 10.1016/j.tice.2022.101985

Li Y, Cai M, Feng Y, Yung B, Wang Y, Gao N, et al. Effect of lncRNA

H19 on nerve degeneration and regeneration after sciatic nerve injury

in rats. Dev Neurobiol. 2022;82(1):98-111. doi: 10.1002/dneu.22861

Walker CL. Progress in perisynaptic Schwann cell and

neuromuscular junction research. Neural Regen Res.

;17(6):1273-4. doi: 10.4103/1673-5374.327334

Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, et al.

Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol

[Internet]. 2023[cited 2023 Dec 22];956:175955. Available

from: https://www.sciencedirect.com/science/article/abs/pii/

S0014299923004673?via%3Dihub doi: 10.1016/j.ejphar.2023.175955

Nocera G, Jacob C. Mechanisms of Schwann cell plasticity

involved in peripheral nerve repair after injury. Cell Mol Life Sci.

;77(20):3977-989. doi: 10.1007/s00018-020-03516-9

Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C,

et al. Microglia facilitate repair of demyelinated lesions via postsqualene sterol synthesis. Nature Neuroscience. 2021;24(1):47-60.

doi: 10.1038/s41593-020-00757-6

Gordon T. Peripheral Nerve Regeneration and Muscle Reinnervation.

Int Journal Mol Sci [Internet]. 2020[cited 2023 Dec 29];21(22):8652.

Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/

PMC7697710/pdf/ijms-21-08652.pdf doi: 10.3390/ijms21228652

Carr MJ, Johnston AP. Schwann cells as drivers of tissue repair and

regeneration. Curr Opin Neurobiol. 2017;47:52-7. doi: 10.1016/j.

conb.2017.09.003

Kaiser R, Ullas G, Havránek P, Homolková H, Miletín J, Tichá P,

et al. Current concepts in peripheral nerve injury repair. Současný

pohled na ošetření poraněného periferního nervu. Acta Chir Plast.

;59(2):85-91.

Ning L, Sun H, Lelong T, Guilloteau R, Zhu N, Schreyer DJ, et

al. 3D bioprinting of scaffolds with living Schwann cells for

potential nerve tissue engineering applications. Biofabrication

[Internet]. 2018[cited 2023 Dec 29];10(3):035014. Available

from: https://iopscience.iop.org/article/10.1088/1758-5090/aacd30

doi: 10.1088/1758-5090/aacd30

Wong KM, Babetto E, Beirowski B. Axon degeneration: make the

Schwann cell great again. Neural Regen Res. 2017;12(4):518-24.

doi: 10.4103/1673-5374.205000

Liu B, Xin W, Tan JR, Zhu RP, Li T, Wang D, et al. Myelin sheath structure

and regeneration in peripheral nerve injury repair. Proc Natl Acad Sci U

S A. 2019;116(44):22347-52. doi: 10.1073/pnas.1910292116

Liu J, Ma X, Hu X, Wen J, Zhang H, Xu J, et al. Schwann

cell-specific RhoA knockout accelerates peripheral nerve

regeneration via promoting Schwann cell dedifferentiation. Glia.

;71(7):1715-28. doi: 10.1002/glia.24365

Liu YP, Luo ZR, Wang C, Cai H, Zhao TT, Li H, et al.

Electroacupuncture Promoted Nerve Repair After Peripheral

Nerve Injury by Regulating miR-1b and Its Target Brain- Derived

Neurotrophic Factor. Front Neurosci [Internet]. 2020[cited 2023

Dec 22];14:525144. Available from: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC7550428/pdf/fnins-14-525144.pdf

doi: 10.3389/fnins.2020.525144

Liu YP, Xu P, Guo CX, Luo ZR, Zhu J, Mou FF, et al. miR-1b

overexpression suppressed proliferation and migration of RSC96

and increased cell apoptosis. Neurosci Lett. 2018;687:137-45.

doi: 10.1016/j.neulet.2018.09.041

Zhang Y, Shen Y, Zhao L, Zhao Q, Zhao L, Yi S. Transcription Factor

BCL11A Regulates Schwann Cell Behavior During Peripheral

Nerve Regeneration. Mol Neurobiol. 2023;60(9):5352-65.

doi: 10.1007/s12035-023-03432-6

Jiang J, Hu Y, Zhang B, Shi Y, Zhang J, Wu X, et al. MicroRNA-9 regulates

mammalian axon regeneration in peripheral nerve injury. Mol Pain

[Internet]. 2017[cited 2023 Dec 27];13:1744806917711612. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5464514/

pdf/10.1177_1744806917711612.pdf doi: 10.1177/1744806917711612

Zhou Z, Zhang N, Shi P, Xie J. Mechanism of miR-148b inhibiting

cell proliferation and migration of Schwann cells by regulating

CALR. Artif Cells Nanomed Biotechnol. 2019;47(1):1978-83.

doi: 10.1080/21691401.2019.1609008

Zou D, Zhou X, Liu J, Zhao Y, Jiang X. MiR-34a regulates Schwann

cell proliferation and migration by targeting CNTN2. Neuroreport.

;31(17):1180-8. doi: 10.1097/WNR.0000000000001539

He X, Zhang JN, Guo Y, Yang X, Huang Y, Hao D. METTL3-

Mediated N6-Methyladenosine Modification of lncRNA D26496

Suppresses the Proliferation and Migration of Schwann Cells

after Sciatic Nerve Injury. Mol Neurobiol. 2023;60(5):2413-25.

doi: 10.1007/s12035-023-03222-0

Ji XM, Wang SS, Cai XD, Wang XH, Liu QY, Wang P, et al.

Novel miRNA, miR-sc14, promotes Schwann cell proliferation

and migration. Neural Regen Res. 2019;14(9):1651-6.

doi: 10.4103/1673-5374.255996

Zhou Z, Qi D, Gan Q, Wang F, Qin B, Li J, et al. Studies on the

Regulatory Roles and Related Mechanisms of lncRNAs in the

Nervous System. Oxid Med Cell Longev [Internet]. 2021[cited 2023

Dec 22];2021:6657944. Available from: https://www.ncbi.nlm.

nih.gov/pmc/articles/PMC7984887/pdf/OMCL2021-6657944.pdf

doi: 10.1155/2021/6657944

Ma Y, Zhai D, Zhang W, Zhang H, Dong L, Zhou Y, et al. Downregulation of long non-coding RNA MEG3 promotes Schwann cell

proliferation and migration and repairs sciatic nerve injury in rats.

J Cell Mol Med. 2020;24(13):7460-9. doi: 10.1111/jcmm.15368

Yao C, Wang Q, Wang Y, Wu J, Cao X, Lu Y, et al. Loc680254

regulates Schwann cell proliferation through Psrc1 and Ska1

as a microRNA sponge following sciatic nerve injury. Glia.

;69(10):2391-403. doi: 10.1002/glia.24045

Yin G, Peng Y, Lin Y, Wang P, Li Z, Wang R, et al. Long Noncoding RNA MSTRG.24008.1 Regulates the Regeneration of the

Sciatic Nerve via the miR-331-3p- NLRP3/MAL Axis. Front Cell

Dev Biol [Internet]. 2021[cited 2023 Dec 22];9:641603. Available

from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213216/

pdf/fcell-09-641603.pdf doi: 10.3389/fcell.2021.641603

Gao L, Feng A, Yue P, Liu Y, Zhou Q, Zang Q, et al. LncRNA

BC083743 Promotes the Proliferation of Schwann Cells and

Axon Regeneration Through miR-103-3p/BDNF After Sciatic

Nerve Crush. J Neuropathol Exp Neurol. 2020;79(10):1100-4.

doi: 10.1093/jnen/nlaa069

Shen Y, Cheng Z, Chen S, Zhang Y, Chen Q, Yi S. Dysregulated

miR-29a-3p/PMP22 Modulates Schwann Cell Proliferation and

Migration During Peripheral Nerve Regeneration. Mol Neurobiol.

;59(2):1058-72. doi: 10.1007/s12035-021-02589-2

Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P,

Millesi F, et al. How miRNAs Regulate Schwann Cells during

Peripheral Nerve Regeneration- A Systemic Review. Int J Mol Sci

[Internet]. 2022[cited 2023 Dec 27];23(7):3440. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8999002/pdf/

ijms-23-03440.pdf doi: 10.3390/ijms23073440

Liu M, Li P, Jia Y, Cui Q, Zhang K, Jiang J. Role of Non-coding

RNAs in Axon Regeneration after Peripheral Nerve Injury. Int J

Biol Sci. 2022;18(8):3435-46. doi: 10.7150/ijbs.70290

Yi S, Wang QH, Zhao LL, Qin J, Wang YX, Yu B, et al.

miR-30c promotes Schwann cell remyelination following

peripheral nerve injury. Neural Regen Res. 2017;12(10):1708-15.

doi: 10.4103/1673-5374.217351

Sardella- Silva G, Mietto BS, Ribeiro- Resende VT. Four

Seasons for Schwann Cell Biology, Revisiting Key Periods:

Development, Homeostasis, Repair, and Aging. Biomolecules

[Internet]. 2021[cited 2023 Dec 22];11(12):1887. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8699407/pdf/

biomolecules-11-01887.pdf doi: 10.3390/biom11121887

Demydchuk AS, Shamalo SM, Kotyk TL, Raskaliei TYa,

Raskaliei VB, Popadynets OH, et al. Morphological changes

in the peripheral nerves in trauma, mercury intoxication,

hypothyroidism, and their correction. Bulletin of problems

biology and medicine. 2023;2:374-80. doi: 10.29254/2077-4214-

-2-169-374-380

##submission.downloads##

Опубліковано

2024-01-30

Номер

Розділ

Статті