АНТИБІОТИКОРЕЗИСТЕНТНІСТЬ ПРИ ПНЕВМОНІЇ У ДІТЕЙ: ВИКЛИКИ ТА ШЛЯХИ ПОДОЛАННЯ

Автор(и)

  • Д.В. Усенко

DOI:

https://doi.org/10.24061/1727-4338.XXIV.2.92.2025.09

Ключові слова:

антибіотики, антибіотикорезистентність, пневмонія у дітей, бактеріальні збудники, механізми антибактеріальної резистентності

Анотація

Проблема антибіотикорезистентності при пневмонії у дітей є актуальним
викликом для сучасної медицини. Хоча завдяки покращенню доступу до медичної
допомоги, вакцинації та вдосконаленню антибактеріальної терапії вдалося значно
знизити рівень захворюваності та смертності, розвиток стійкості збудників до
антибактеріальних препаратів загрожує ефективності традиційних методів
лікування.
Мета роботи – здійснити аналіз даних літератури стосовно сучасного стану
антибіотикорезистентності при пневмонії у дітей, основних факторів, що
сприяють розвитку стійкості до антибактеріальних препаратів, а також щодо
ефективних підходів до її подолання.
Висновки. На основі аналізу сучасних клінічних досліджень показано ефективність
актуальних схем емпіричної антибактеріальної терапії з урахуванням локальних
даних про чутливість збудників. Отримані результати можуть стати основою
для вдосконалення підходів до антибактеріальної терапії у дітей із пневмонією.

Посилання

Meyer Sauteur PM. Childhood community-acquired pneumonia. Eur

J Pediatr. 2024;183(3):1129-36. doi: 10.1007/s00431-023-05366-6

Tsoumani E, Carter JA, Salomonsson S, Stephens JM, Bencina G.

Clinical, economic, and humanistic burden of community acquired

pneumonia in Europe: a systematic literature review. Expert Rev

Vaccines. 2023;22(1):876-84. doi: 10.1080/14760584.2023.2261785

GBD 2019Antimicrobial Resistance Collaborators. Global mortality

associated with 33 bacterial pathogens in 2019: a systematic

analysis for the Global Burden of Disease Study 2019. Lancet.

;400(10369):2221-48. doi: 10.1016/s0140-6736(22)02185-7

GBD 2021 Lower Respiratory Infections and Antimicrobial

Resistance Collaborators. Global, regional, and national incidence

and mortality burden of non-COVID-19 lower respiratory

infections and aetiologies, 1990-2021: a systematic analysis from

the Global Burden of Disease Study 2021. Lancet Infect Dis.

;24(9):974-1002. doi: 10.1016/s1473-3099(24)00176-2

Okafor C, Olaniran A, Darj E. Challenges and recommendations for

addressing under-¿ve pneumonia morbidity and mortality in Nigeria.

Afr Health Sci. 2023;23(2):193-201. doi: 10.4314/ahs.v23i2.21

Binns E, Tuckerman J, Licciardi PV, Wurzel D. Respiratory

syncytial virus, recurrent wheeze and asthma:A narrative review of

pathophysiology, prevention and future directions. J Paediatr Child

Health. 2022;58(10):1741-6. doi: 10.1111/jpc.16197

Principi N, Autore G, Ramundo G, Esposito S. Epidemiology of

respiratory infections during the COVID-19 pandemic. Viruses

[Internet]. 2023[cited 2025 Jun 20];15(5):1160. Available from:

https://pmc.ncbi.nlm. nih.gov/articles/PMC10224029/pdf/

viruses-15-01160.pdf doi: 10.3390/v15051160

Tran-Quang K, Nguyen-Thi-Dieu T, Tran-Do H, Pham-Hung V,

Nguyen-Vu T, Tran-Xuan B, et al. Antibiotic resistance of

Streptococcus pneumoniae in Vietnamese children with severe

pneumonia: a cross-sectional study. Front Public Health [Internet].

[cited 2025 Jun 20];11:1110903. Available from: https://pmc.

ncbi.nlm.nih.gov/articles/PMC10294427/pdf/fpubh-11-1110903.

pdf doi: 10.3389/fpubh.2023.1110903

Singla S, Sih K, Goldman RD. Antibiotic treatment duration for

community-acquired pneumonia in children. Can Fam Physician.

;69(6):400-2. doi: 10.1093/cid/ciac374

Lipsett SC, Hall M, Ambroggio L, Hersh AL, Shah SS, Brogan TV,

et al.Antibiotic choice and clinical outcomesin ambulatory children

with community-acquired pneumonia. J Pediatr. 2021;229:207-15.

doi: 10.1016/j.jpeds.2020.10.005

GBD GBD 2021 Antimicrobial Resistance Collaborators. Global

burdenof bacterial antimicrobialresistance 1990-2021: a systematic

analysis with forecasts to 2050. Lancet. 2024;404(10459):1199-26.

doi: 10.1016/s0140-6736(24)01867-1

Antimicrobial Resistance Collaborators. Global burden of bacterial

antimicrobial resistance in 2019: a systematic analysis. Lancet.

;399(10325):629-55. doi: 10.1016/s0140-6736(21)02724-0

Baquero F. Threats of antibiotic resistance: an obliged reappraisal. Int

Microbiol. 2021;24(4):499-506. doi: 10.1007/s10123-021-00184-y

Fu P, Xu H, Jing C, Deng J, Wang H, Hua C, et al. Bacterial

epidemiology and antimicrobial resistance pro¿les in children

reported by the ISPED program in China, 2016 to 2020. Microbiol

Spectr[Internet].2021[cited2025Jun 18];9(3): e0028321.Available

from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8567242/pdf/

spectrum.00283-21.pdf doi: 10.1128/spectrum.00283-21

Lázár V, Snitser O, Barkan D, Kishony R. Antibiotic

combinations reduce Staphylococcus aureus clearance. Nature.

;610(7932):540-6. doi: 10.1038/s41586-022-05260-5

Freiberg JA, Reyes Ruiz VM, Gimza BD, Murdoch CC, Green ER,

Curry JM, et al. Restriction of arginine induces antibiotic tolerance

in Staphylococcus aureus. Nat Commun [Internet]. 2024[cited

Jun 20];15(1):6734. Available from: https://pmc.ncbi.nlm.

nih.gov/articles/PMC11306626/pdf/41467_2024_Article_51144.

pdf doi: 10.1038/s41467-024-51144-9

Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De

Oliveira DMP, Jespersen MG, et al. Pathogenesis, epidemiology

and control of GroupAStreptococcus infection. NatRev Microbiol.

;21(7):431-47. doi: 10.1038/s41579-023-00865-7

Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus

pyogenes: Basic Biology to Clinical Manifestations. 2nd ed.

Oklahoma City (OK): University of Oklahoma Health Sciences

Center; 2022. Chapter 30, Cattoir V. Mechanisms of Streptococcus

pyogenes Antibiotic Resistance.

Wang G, Zhao G, Chao X, Xie L, Wang H. The characteristic

of virulence, bio¿lm and antibiotic resistance of Klebsiella

pneumoniae. Int J Environ Res Public Health [Internet]. 2020[cited

Jun 18];17(17):6278. Available from: https://pmc.ncbi.

nlm.nih.gov/articles/PMC7503635/pdf/ijerph-17-06278.pdf

doi: 10.3390/ijerph17176278

Hu F, Pan Y, Li H, Han R, Liu X, Ma R, et al. Carbapenem-resistant

Klebsiella pneumoniae capsular types, antibiotic resistance and

virulence factors in China: a longitudinal, multi-centre study. Nat

Microbiol. 2024;9(3):814-29. doi: 10.1038/s41564-024-01612-1

Stojowska-Swędrzyńska K, Łupkowska A, Kuczyńska-Wiśnik D,

Laskowska E. Antibiotic heteroresistance in Klebsiella pneumoniae.

IntJ Mol Sci [Internet]. 2021[cited 2025 Jun 18];23(1):449.Available

from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8745652/pdf/

ijms-23-00449.pdf doi: 10.3390/ijms23010449

Bristy SA, Hossain MA, Hasan MI, Mahmud SMH, Moni MA,

Rahman MH. An integrated complete-genome sequencing and

systems biology approach to predict antimicrobial resistance genes

in the virulent bacterial strains of Moraxella catarrhalis. Brief

Funct Genomics. 2023;22(4):375-91. doi: 10.1093/bfgp/elad005

Ekinci E, Willen L, Rodriguez Ruiz JP, Maertens K, Van

Heirstraeten L, Serrano G, et al. Haemophilus inÀuenzae carriage

and antibiotic resistance pro¿le in Belgian infants over a three-year

period (2016-2018). Front Microbiol [Internet]. 2023[cited 2025

Jun 21];14:1160073.Available from: https://pmc.ncbi.nlm.nih.gov/

articles/PMC10164969/pdf/fmicb-14-1160073.pdf doi: 10.3389/

fmicb.2023.1160073

World Health Organization. Antimicrobial Resistance: Global

Report on Surveillance. Geneva: WHO; 2014. 256 p.

Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat

Rev Microbiol. 2022;20(5):257-69. doi: 10.1038/s41579-021-00649-x

Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance

(AMR). Br J Biomed Sci [Internet]. 2023[cited 2025 Jun

;80:11387. Available from: https://pmc.ncbi.nlm.nih.gov/

articles/PMC10336207/pdf/bjbs-80-11387.pdf doi: 10.3389/

bjbs.2023.11387

Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental

antimicrobial resistance and its drivers: a potential threat to public

health. J Glob Antimicrob Resist. 2021;27:101-11. doi: 10.1016/j.

jgar.2021.08.001

NguyenAQ,VuHP,NguyenLN,WangQ,DjordjevicSP,DonnerE,et al.

Monitoring antibiotic resistance genes in wastewater treatment: Current

strategies and future challenges. Sci Total Environ [Internet]. 2021[cited

Jun 21];783:146964. Available from: https://www.sciencedirect.

com/science/article/abs/pii/S0048969721020349?via%3Dihub

doi: 10.1016/j.scitotenv.2021.146964

Baker S, Thomson N, Weill FX, Holt KE. Genomic insights into the

emergence and spread of antimicrobial-resistant bacterial pathogens.

Science. 2018;360(6390):733-8. doi: 10.1126/science.aar3777

Aslam B, Khurshid M,Arshad MI, Muzammil S, Rasool M, Yasmeen

N, et al. Antibiotic resistance: one health one world outlook. Front

Cell Infect Microbiol [Internet]. 2021[cited 2025 Jun 21];11:771510.

Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8656695/

pdf/fcimb-11-771510.pdf doi: 10.3389/fcimb.2021.771510

O’Neill J. Tackling Drug-Resistant Infections Globally: Final

Report and Recommendations. The Review on Antimicrobial

Resistance. Government of the United Kingdom; 2016. 84 p.

Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F,

Saturnino C, et al. Multidrug resistance (MDR): a widespread

phenomenon in pharmacological therapies. Molecules [Internet].

[cited 2025 Jun 18];27(3):616. Available from: https://pmc.

ncbi.nlm.nih.gov/articles/PMC8839222/pdf/molecules-27-00616.

pdf doi: 10.3390/molecules27030616

LiL,MaJ,YuZ,LiM,ZhangW,SunH.Epidemiologicalcharacteristics

and antibiotic resistance mechanisms of Streptococcus pneumoniae:

An updated review. Microbiol Res [Internet]. 2023[cited 2025

Jun 18];266:127221. Available from: https://www.sciencedirect.

com/science/a rticle/pii/S0944501322002610?via%3Dihub

doi: 10.1016/j.micres.2022.127221

Li L, Zhou J, Li M, Yu Z, Gao K, Yang J, et al. Comparative

genomic analysis of streptococcus pneumoniae strains: penicillin

non-susceptible multi-drug-resistant serotype 19A isolates. Curr

Microbiol. 2022;79:49. doi: 10.1007/s00284-021-02715-2

Chen YY, Hsieh YC, Gong YN, Liao WC, Li SW, Chang IY, et

al. Genomic Insight into the Spread of Meropenem-Resistant

Streptococcus pneumoniae Spain23F-ST81, Taiwan. Emerg Infect

Dis. 2020;26(4):711-20. doi: 10.3201/eid2604.190717

Meiers M, Volz C, Eisel J, Maurer P, Henrich B, Hakenbeck R.

Altered lipid composition in Streptococcus pneumoniae cpoA

mutants. BMC Microbiol [Internet]. 2014[cited 2025 Jun 21];14:12.

Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3901891/

pdf/1471-2180-14-12.pdf doi: 10.1186/1471-2180-14-12

Huang YY, Sun YH, Huang N, Liu XX, Yan J, Sun AH. Sublethal

β-lactam antibiotics induce PhpP phosphatase expression and StkP

kinase phosphorylation in PBP-independent β-lactam antibiotic

resistance of Streptococcus pneumoniae. Biochem Biophys Res

Commun. 2018;503(3):2000-8. doi: 10.1016/j.bbrc.2018.07.148

Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-level

macrolide resistance due to the mega element [mef(E)/mel] in

Streptococcus pneumoniae. Front Microbiol [Internet]. 2019[cited

Jun 18];10:868. Available from: https://pmc.ncbi.nlm.nih.

gov/articles/PMC6491947/pdf/fmicb-10-00868.pdf doi: 10.3389/

fmicb.2019.00868

Keness Y, Bisharat N. Draft genome sequences of Streptococcus

pneumoniae with high-level resistance to respiratory

Àuoroquinolones. Genome Announc [Internet]. 2016[cited 2025

Jun 21];4(2): e00181-16. Available from: https://pmc.ncbi.nlm.

nih.gov/articles/PMC4816619/pdf/e00181-16.pdf doi: 10.1128/

genomea.00181-16

Torres A, Cilloniz C, Niederman MS, Menéndez R, Chalmers

JD, Wunderink RG, et al. Pneumonia. Nat Rev Dis Primers.

;7(1):25. doi: 10.1038/s41572-021-00259-0

Leung AKC, Wong AHC, Hon KL. Community-acquired

pneumonia in children. Recent Pat InÀamm Allergy Drug Discov.

;12(2):136-44. doi: 10.2174/1872213x12666180621163821

Kulkarni D, Wang X, Sharland E, Stans¿eld D, Campbell H,

Nair H. The global burden of hospitalisation due to pneumonia

caused by Staphylococcus aureus in the under-5 years children:

A systematic review and meta-analysis. EClinicalMedicine

[Internet]. 2022[cited 2025 Jun 21];44:101267. Available from:

https://pmc.ncbi.nlm.nih.gov/articles/PMC8763635/pdf/main.pdf

doi: 10.1016/j.eclinm.2021.101267

Cools F, Delputte P, Cos P. The search for novel treatmentstrategies

for Streptococcus pneumoniae infections. FEMS Microbiol Rev

[Internet]. 2021[cited 2025 Jun 18];45(4): fuaa072. Available

from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8371276/pdf/

fuaa072.pdf doi: 10.1093/femsre/fuaa072

Scelfo C, Menzella F, Fontana M, Ghidoni G, Galeone C,

Facciolongo NC. Pneumonia and invasive pneumococcal

diseases: the role of pneumococcal conjugate vaccine in the era

of multi-drug resistance. Vaccines (Basel) [Internet]. 2021[cited

Jun 18];9(5):420. Available from: https://www.mdpi.

com/2076-393X/9/5/420 doi: 10.3390/vaccines9050420

##submission.downloads##

Опубліковано

2025-08-08

Номер

Розділ

Статті