АНТИБІОТИКОРЕЗИСТЕНТНІСТЬ ПРИ ПНЕВМОНІЇ У ДІТЕЙ: ВИКЛИКИ ТА ШЛЯХИ ПОДОЛАННЯ
DOI:
https://doi.org/10.24061/1727-4338.XXIV.2.92.2025.09Ключові слова:
антибіотики, антибіотикорезистентність, пневмонія у дітей, бактеріальні збудники, механізми антибактеріальної резистентностіАнотація
Проблема антибіотикорезистентності при пневмонії у дітей є актуальним
викликом для сучасної медицини. Хоча завдяки покращенню доступу до медичної
допомоги, вакцинації та вдосконаленню антибактеріальної терапії вдалося значно
знизити рівень захворюваності та смертності, розвиток стійкості збудників до
антибактеріальних препаратів загрожує ефективності традиційних методів
лікування.
Мета роботи – здійснити аналіз даних літератури стосовно сучасного стану
антибіотикорезистентності при пневмонії у дітей, основних факторів, що
сприяють розвитку стійкості до антибактеріальних препаратів, а також щодо
ефективних підходів до її подолання.
Висновки. На основі аналізу сучасних клінічних досліджень показано ефективність
актуальних схем емпіричної антибактеріальної терапії з урахуванням локальних
даних про чутливість збудників. Отримані результати можуть стати основою
для вдосконалення підходів до антибактеріальної терапії у дітей із пневмонією.
Посилання
Meyer Sauteur PM. Childhood community-acquired pneumonia. Eur
J Pediatr. 2024;183(3):1129-36. doi: 10.1007/s00431-023-05366-6
Tsoumani E, Carter JA, Salomonsson S, Stephens JM, Bencina G.
Clinical, economic, and humanistic burden of community acquired
pneumonia in Europe: a systematic literature review. Expert Rev
Vaccines. 2023;22(1):876-84. doi: 10.1080/14760584.2023.2261785
GBD 2019Antimicrobial Resistance Collaborators. Global mortality
associated with 33 bacterial pathogens in 2019: a systematic
analysis for the Global Burden of Disease Study 2019. Lancet.
;400(10369):2221-48. doi: 10.1016/s0140-6736(22)02185-7
GBD 2021 Lower Respiratory Infections and Antimicrobial
Resistance Collaborators. Global, regional, and national incidence
and mortality burden of non-COVID-19 lower respiratory
infections and aetiologies, 1990-2021: a systematic analysis from
the Global Burden of Disease Study 2021. Lancet Infect Dis.
;24(9):974-1002. doi: 10.1016/s1473-3099(24)00176-2
Okafor C, Olaniran A, Darj E. Challenges and recommendations for
addressing under-¿ve pneumonia morbidity and mortality in Nigeria.
Afr Health Sci. 2023;23(2):193-201. doi: 10.4314/ahs.v23i2.21
Binns E, Tuckerman J, Licciardi PV, Wurzel D. Respiratory
syncytial virus, recurrent wheeze and asthma:A narrative review of
pathophysiology, prevention and future directions. J Paediatr Child
Health. 2022;58(10):1741-6. doi: 10.1111/jpc.16197
Principi N, Autore G, Ramundo G, Esposito S. Epidemiology of
respiratory infections during the COVID-19 pandemic. Viruses
[Internet]. 2023[cited 2025 Jun 20];15(5):1160. Available from:
https://pmc.ncbi.nlm. nih.gov/articles/PMC10224029/pdf/
viruses-15-01160.pdf doi: 10.3390/v15051160
Tran-Quang K, Nguyen-Thi-Dieu T, Tran-Do H, Pham-Hung V,
Nguyen-Vu T, Tran-Xuan B, et al. Antibiotic resistance of
Streptococcus pneumoniae in Vietnamese children with severe
pneumonia: a cross-sectional study. Front Public Health [Internet].
[cited 2025 Jun 20];11:1110903. Available from: https://pmc.
ncbi.nlm.nih.gov/articles/PMC10294427/pdf/fpubh-11-1110903.
pdf doi: 10.3389/fpubh.2023.1110903
Singla S, Sih K, Goldman RD. Antibiotic treatment duration for
community-acquired pneumonia in children. Can Fam Physician.
;69(6):400-2. doi: 10.1093/cid/ciac374
Lipsett SC, Hall M, Ambroggio L, Hersh AL, Shah SS, Brogan TV,
et al.Antibiotic choice and clinical outcomesin ambulatory children
with community-acquired pneumonia. J Pediatr. 2021;229:207-15.
doi: 10.1016/j.jpeds.2020.10.005
GBD GBD 2021 Antimicrobial Resistance Collaborators. Global
burdenof bacterial antimicrobialresistance 1990-2021: a systematic
analysis with forecasts to 2050. Lancet. 2024;404(10459):1199-26.
doi: 10.1016/s0140-6736(24)01867-1
Antimicrobial Resistance Collaborators. Global burden of bacterial
antimicrobial resistance in 2019: a systematic analysis. Lancet.
;399(10325):629-55. doi: 10.1016/s0140-6736(21)02724-0
Baquero F. Threats of antibiotic resistance: an obliged reappraisal. Int
Microbiol. 2021;24(4):499-506. doi: 10.1007/s10123-021-00184-y
Fu P, Xu H, Jing C, Deng J, Wang H, Hua C, et al. Bacterial
epidemiology and antimicrobial resistance pro¿les in children
reported by the ISPED program in China, 2016 to 2020. Microbiol
Spectr[Internet].2021[cited2025Jun 18];9(3): e0028321.Available
from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8567242/pdf/
spectrum.00283-21.pdf doi: 10.1128/spectrum.00283-21
Lázár V, Snitser O, Barkan D, Kishony R. Antibiotic
combinations reduce Staphylococcus aureus clearance. Nature.
;610(7932):540-6. doi: 10.1038/s41586-022-05260-5
Freiberg JA, Reyes Ruiz VM, Gimza BD, Murdoch CC, Green ER,
Curry JM, et al. Restriction of arginine induces antibiotic tolerance
in Staphylococcus aureus. Nat Commun [Internet]. 2024[cited
Jun 20];15(1):6734. Available from: https://pmc.ncbi.nlm.
nih.gov/articles/PMC11306626/pdf/41467_2024_Article_51144.
pdf doi: 10.1038/s41467-024-51144-9
Brouwer S, Rivera-Hernandez T, Curren BF, Harbison-Price N, De
Oliveira DMP, Jespersen MG, et al. Pathogenesis, epidemiology
and control of GroupAStreptococcus infection. NatRev Microbiol.
;21(7):431-47. doi: 10.1038/s41579-023-00865-7
Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus
pyogenes: Basic Biology to Clinical Manifestations. 2nd ed.
Oklahoma City (OK): University of Oklahoma Health Sciences
Center; 2022. Chapter 30, Cattoir V. Mechanisms of Streptococcus
pyogenes Antibiotic Resistance.
Wang G, Zhao G, Chao X, Xie L, Wang H. The characteristic
of virulence, bio¿lm and antibiotic resistance of Klebsiella
pneumoniae. Int J Environ Res Public Health [Internet]. 2020[cited
Jun 18];17(17):6278. Available from: https://pmc.ncbi.
nlm.nih.gov/articles/PMC7503635/pdf/ijerph-17-06278.pdf
doi: 10.3390/ijerph17176278
Hu F, Pan Y, Li H, Han R, Liu X, Ma R, et al. Carbapenem-resistant
Klebsiella pneumoniae capsular types, antibiotic resistance and
virulence factors in China: a longitudinal, multi-centre study. Nat
Microbiol. 2024;9(3):814-29. doi: 10.1038/s41564-024-01612-1
Stojowska-Swędrzyńska K, Łupkowska A, Kuczyńska-Wiśnik D,
Laskowska E. Antibiotic heteroresistance in Klebsiella pneumoniae.
IntJ Mol Sci [Internet]. 2021[cited 2025 Jun 18];23(1):449.Available
from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8745652/pdf/
ijms-23-00449.pdf doi: 10.3390/ijms23010449
Bristy SA, Hossain MA, Hasan MI, Mahmud SMH, Moni MA,
Rahman MH. An integrated complete-genome sequencing and
systems biology approach to predict antimicrobial resistance genes
in the virulent bacterial strains of Moraxella catarrhalis. Brief
Funct Genomics. 2023;22(4):375-91. doi: 10.1093/bfgp/elad005
Ekinci E, Willen L, Rodriguez Ruiz JP, Maertens K, Van
Heirstraeten L, Serrano G, et al. Haemophilus inÀuenzae carriage
and antibiotic resistance pro¿le in Belgian infants over a three-year
period (2016-2018). Front Microbiol [Internet]. 2023[cited 2025
Jun 21];14:1160073.Available from: https://pmc.ncbi.nlm.nih.gov/
articles/PMC10164969/pdf/fmicb-14-1160073.pdf doi: 10.3389/
fmicb.2023.1160073
World Health Organization. Antimicrobial Resistance: Global
Report on Surveillance. Geneva: WHO; 2014. 256 p.
Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat
Rev Microbiol. 2022;20(5):257-69. doi: 10.1038/s41579-021-00649-x
Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance
(AMR). Br J Biomed Sci [Internet]. 2023[cited 2025 Jun
;80:11387. Available from: https://pmc.ncbi.nlm.nih.gov/
articles/PMC10336207/pdf/bjbs-80-11387.pdf doi: 10.3389/
bjbs.2023.11387
Samreen, Ahmad I, Malak HA, Abulreesh HH. Environmental
antimicrobial resistance and its drivers: a potential threat to public
health. J Glob Antimicrob Resist. 2021;27:101-11. doi: 10.1016/j.
jgar.2021.08.001
NguyenAQ,VuHP,NguyenLN,WangQ,DjordjevicSP,DonnerE,et al.
Monitoring antibiotic resistance genes in wastewater treatment: Current
strategies and future challenges. Sci Total Environ [Internet]. 2021[cited
Jun 21];783:146964. Available from: https://www.sciencedirect.
com/science/article/abs/pii/S0048969721020349?via%3Dihub
doi: 10.1016/j.scitotenv.2021.146964
Baker S, Thomson N, Weill FX, Holt KE. Genomic insights into the
emergence and spread of antimicrobial-resistant bacterial pathogens.
Science. 2018;360(6390):733-8. doi: 10.1126/science.aar3777
Aslam B, Khurshid M,Arshad MI, Muzammil S, Rasool M, Yasmeen
N, et al. Antibiotic resistance: one health one world outlook. Front
Cell Infect Microbiol [Internet]. 2021[cited 2025 Jun 21];11:771510.
Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8656695/
pdf/fcimb-11-771510.pdf doi: 10.3389/fcimb.2021.771510
O’Neill J. Tackling Drug-Resistant Infections Globally: Final
Report and Recommendations. The Review on Antimicrobial
Resistance. Government of the United Kingdom; 2016. 84 p.
Catalano A, Iacopetta D, Ceramella J, Scumaci D, Giuzio F,
Saturnino C, et al. Multidrug resistance (MDR): a widespread
phenomenon in pharmacological therapies. Molecules [Internet].
[cited 2025 Jun 18];27(3):616. Available from: https://pmc.
ncbi.nlm.nih.gov/articles/PMC8839222/pdf/molecules-27-00616.
pdf doi: 10.3390/molecules27030616
LiL,MaJ,YuZ,LiM,ZhangW,SunH.Epidemiologicalcharacteristics
and antibiotic resistance mechanisms of Streptococcus pneumoniae:
An updated review. Microbiol Res [Internet]. 2023[cited 2025
Jun 18];266:127221. Available from: https://www.sciencedirect.
com/science/a rticle/pii/S0944501322002610?via%3Dihub
doi: 10.1016/j.micres.2022.127221
Li L, Zhou J, Li M, Yu Z, Gao K, Yang J, et al. Comparative
genomic analysis of streptococcus pneumoniae strains: penicillin
non-susceptible multi-drug-resistant serotype 19A isolates. Curr
Microbiol. 2022;79:49. doi: 10.1007/s00284-021-02715-2
Chen YY, Hsieh YC, Gong YN, Liao WC, Li SW, Chang IY, et
al. Genomic Insight into the Spread of Meropenem-Resistant
Streptococcus pneumoniae Spain23F-ST81, Taiwan. Emerg Infect
Dis. 2020;26(4):711-20. doi: 10.3201/eid2604.190717
Meiers M, Volz C, Eisel J, Maurer P, Henrich B, Hakenbeck R.
Altered lipid composition in Streptococcus pneumoniae cpoA
mutants. BMC Microbiol [Internet]. 2014[cited 2025 Jun 21];14:12.
Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC3901891/
pdf/1471-2180-14-12.pdf doi: 10.1186/1471-2180-14-12
Huang YY, Sun YH, Huang N, Liu XX, Yan J, Sun AH. Sublethal
β-lactam antibiotics induce PhpP phosphatase expression and StkP
kinase phosphorylation in PBP-independent β-lactam antibiotic
resistance of Streptococcus pneumoniae. Biochem Biophys Res
Commun. 2018;503(3):2000-8. doi: 10.1016/j.bbrc.2018.07.148
Schroeder MR, Lohsen S, Chancey ST, Stephens DS. High-level
macrolide resistance due to the mega element [mef(E)/mel] in
Streptococcus pneumoniae. Front Microbiol [Internet]. 2019[cited
Jun 18];10:868. Available from: https://pmc.ncbi.nlm.nih.
gov/articles/PMC6491947/pdf/fmicb-10-00868.pdf doi: 10.3389/
fmicb.2019.00868
Keness Y, Bisharat N. Draft genome sequences of Streptococcus
pneumoniae with high-level resistance to respiratory
Àuoroquinolones. Genome Announc [Internet]. 2016[cited 2025
Jun 21];4(2): e00181-16. Available from: https://pmc.ncbi.nlm.
nih.gov/articles/PMC4816619/pdf/e00181-16.pdf doi: 10.1128/
genomea.00181-16
Torres A, Cilloniz C, Niederman MS, Menéndez R, Chalmers
JD, Wunderink RG, et al. Pneumonia. Nat Rev Dis Primers.
;7(1):25. doi: 10.1038/s41572-021-00259-0
Leung AKC, Wong AHC, Hon KL. Community-acquired
pneumonia in children. Recent Pat InÀamm Allergy Drug Discov.
;12(2):136-44. doi: 10.2174/1872213x12666180621163821
Kulkarni D, Wang X, Sharland E, Stans¿eld D, Campbell H,
Nair H. The global burden of hospitalisation due to pneumonia
caused by Staphylococcus aureus in the under-5 years children:
A systematic review and meta-analysis. EClinicalMedicine
[Internet]. 2022[cited 2025 Jun 21];44:101267. Available from:
https://pmc.ncbi.nlm.nih.gov/articles/PMC8763635/pdf/main.pdf
doi: 10.1016/j.eclinm.2021.101267
Cools F, Delputte P, Cos P. The search for novel treatmentstrategies
for Streptococcus pneumoniae infections. FEMS Microbiol Rev
[Internet]. 2021[cited 2025 Jun 18];45(4): fuaa072. Available
from: https://pmc.ncbi.nlm.nih.gov/articles/PMC8371276/pdf/
fuaa072.pdf doi: 10.1093/femsre/fuaa072
Scelfo C, Menzella F, Fontana M, Ghidoni G, Galeone C,
Facciolongo NC. Pneumonia and invasive pneumococcal
diseases: the role of pneumococcal conjugate vaccine in the era
of multi-drug resistance. Vaccines (Basel) [Internet]. 2021[cited
Jun 18];9(5):420. Available from: https://www.mdpi.
com/2076-393X/9/5/420 doi: 10.3390/vaccines9050420
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Д.В. Усенко

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Часопис користується «Типовим шаблоном положення про авторські права».