ПАТОГЕНЕЗ ДІАБЕТИЧНИХ АНГІОПАТІЙ ТА РОЛЬ ОСТАННІХ У ПОРУШЕННІ МОРФОФУНКЦІОНАЛЬНОГО СТАНУ СЛИЗОВОЇ ОБОЛОНКИ РОТОВОЇ ПОРОЖНИНИ

A. A. Galahdina

Анотація


Узагальнено сучасні дані щодо механізмів розвитку діабетичних ангіопатій та їх ролі в порушенні морфофункціонального стану слизової оболонки ротової порожнини.

Ключові слова


цукровий діабет; ангіопатії; слизова оболонка ротової порожнини

Повний текст:

PDF

Посилання


Giacco F. Oxidative stress and diabetic complications / F. Giacco, M. Brownlee // Circ. Res. – 2010. – Vol.107, №9. – Р. 1058–1070.

Sasaki S. The Role of Oxidative Stress in the Pathogenesis of Diabetic Vascular Complications / S. Sasaki, T. Inoguchi // Diabet. Metab. J. – 2012. – Vol.36, №4. – Р. 255–261.

Madonna R. Cellular and molecular mechanisms of vascular injury in diabetes - part I: pathways of vascular disease in diabetes / R. Madonna, R. De Caterina // Vascul. Pharmacol. – 2011. – Vol.54, №3-6. – Р. 68–74.

Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus // S.deM. Bandeira, L.J.S. da Fonseca, G. da S. Guedes [et al.] // Int. J. Mol. Sci. – 2013. – Vol.14, №2. – Р. 3265–3284.

Mechanism of diabetic macroangiopathy / Nishio Y. // Nihon Rinsho. – 2006. – Vol.64, №11. – Р. 1991–1997.

Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney / E.A. Lee, J.Y. Seo, Z. Jiang [et al.] // Kidney Int. – 2005. – Vol.67, №5. – Р. 1762–1771.

Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes / R. Robertson, H. Zhou, T. Zhang, J.S. Harmon // Cell. Biochem. Biophys. – 2007. – Vol.48, №2-3. – Р.139–146.

Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes / L. Monnier, E. Mas, C. Ginet [et al.] // JAMA. – 2006. – Vol.295, №14. – Р. 1681–1687.

Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia / A. El-Osta, D. Brasacchio, D. Yao, A. Pocai [et al.] // J. Exp. Med. – 2008. – Vol.205, №10. – Р. 2409–2417.

Yu T. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission / T. Yu, B.S. Jhun, Y. Yoon // Antioxid. Redox Signal. –2011 – Vol.14, №3. – Р. 425-437.

Contribution of polyol pathway to diabetes-induced oxidative stress / S.S. Chung, E.C. Ho, K.S. Lam, S.K. Chung // J. Am. Soc. Nephrol. – 2003. – Vol.14, Suppl. 3. – Р.233–236.

Redox state-dependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency / S. Ii, M. Ohta, E. Kudo [et al.] // Diabetologia. – 2004. – Vol. 47, №3. – Р. 541–548.

Son S.M. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes / S.M. Son // Diabetes Metab. J. – 2012. – Vol.36, №3. – Р. 190–198.

Gao L. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signaling / L.Gao, G.E. Mann // Cardiovasc Res. – 2009. – Vol.82, №1. – Р. 9–20.

Wang S. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes / S. Wang, M. Zhang, B. Liang // Circ. Res. – 2010. – Vol.106, №6.– Р. 1117-1128.

Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets / G.R. Drummond, S. Selemidis, K.K. Griendling, C.G. Sobey // Nat. Rev. Drug Discovery. – 2011. – Vol.10, №6. – P. 453–471.

Bolisetty S. Mitochondria and reactive oxygen species: physiology and pathophysiology / S. Bolisetty, E.A. Jaimes // Int. J. Mol. Sci. – 2013. – Vol.14, №3. – Р. 6306–6344.

Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice / P. Lewis, N. Stefanovic, J. Pete [et al.]// Circulation.– 2007.– Vol.115, №16.– P. 2178–2187.

Glutathione S-Transferases Interact with AMP-Activated Protein Kinase: Evidence for S-Glutathionylation and Activation In Vitro / A. Klaus, S. Zorman, A. Berthier [et al.] // PLoS One. – 2013.– Vol.8, №5. – e62497.

Ramasamy R. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model / R. Ramasamy, I.J. Goldberg // Circul. Res. – 2010. – Vol.106, №9. – Р. 1449–1458.

Srivastava S.K. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options / S.K. Srivastava, K.V. Ramana, A. Bhatnagar // Endocrine Rev. – 2005.– Vol.26, №3. – Р. 380–392.

Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders / S.K. Srivastava, U.C.S. Yadav, A.B.M. Reddy [et al.] // Chem.-Biol. Interact. – 2011. – Vol.191, №1–3. – Р. 330–338.

Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose / L. Toma, C.S. Stancu, G.M. Botez [et al.] // Biochem. Biophys. Res. Com. – 2009. – Vol.390, №3. – Р. 877–882.

Impairment of mitochondrial respiratory chain activity in aortic endothelial cells induced by glycated low-density lipoprotein / G.V. Sangle, S.K.R. Chowdhury, X. Xie [et al.] // Free Rad. Biol. Med. – 2010. – Vol.48, №6. – Р. 781–790.

Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats / O. Brouwers, P.M. Niessen, I. Ferreira [et al.] // J. Biol. Chem. – 2011. – Vol.286,№2. – Р. 1374–1380.

Higai K. Amadori-modified glycated albumin predominantly induces E-selectin expression on human umbilical vein endothelial cells through NADPH oxidase activation / K. Higai, A. Shimamura, K. Matsumoto // Clinica Chimica Acta. –2006. – Vol.367, №1-2. – Р. 137–143.

Vardenafil, an inhibitor of phosphodiesterase-5, blocks advanced glycation end product (AGE)-induced up-regulation of monocyte chemoattractant protein-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression via elevation of cGMP / Y. Ishibashi, T. Matsui, M. Takeuchi, S.I. Yamagishi // Clin. Exper. Med. – 2011. – Vol.11, №2. – Р. 131–135.

High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A / D. Yao, T. Taguchi, T. Matsumura [et al.] // J. Biol. Chem. – 2007. – Vol.282, №42. – Р. 31038–31045.

Hyperglycemia Impairs Proteasome Function by Methylglyoxal / M.A. Queisser, D.Yao, S.Geisler [et al.] // Diabetes. – 2010. – Vol.59, №3. – Р. 670–678.

Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor / W. Cai, J.C. He, L. Zhu [et al.] // Proc. Natl Acad. Sci. USA. – 2006. – Vol.103, №37. – Р. 13801–13806.

Yao D. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands / D.Yao, M. Brownlee // Diabetes. – 2010. – Vol. 59, №1. – Р. 249–255.

Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells / R. Piga, Y. Naito, S. Kokura [et al.] // Atherosclerosis. – 2007. – Vol.193, №2. – Р. 328–334.

Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production / L. Quagliaro, L. Piconi, R. Assaloni [et al.] // Atherosclerosis. – 2005.– Vol.183, №2. – Р. 259–267.

Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy / P. Geraldes, J. Hiraoka-Yamamoto, M. Matsumoto [et al.] // Nat. Med. – 2009. – Vol.15, №11. – Р. 1298–1306.

Geraldes P. Activation of protein kinase C isoforms and its impact on diabetic complications / P. Geraldes, G.L. King // Circ. Res. – 2010. – Vol.106, №8. – Р. 1319–1331.

AGE/RAGE produces endothelial dysfunction in coronary arterioles in Type 2 diabetic mice / X. Gao, H. Zhang, A.M. Schmidt, C. Zhang // Amer. J. Physiol. –2008. – Vol.295, №2. – Р. 491–498.

Blockade of PKC-β protects HUVEC from advanced glycation end products induced inflammation / Y. Xu, S. Wang, L. Feng [et al.] // Intern. Immunopharmacol. – 2010.– Vol.10, №12. – Р.1552–1559.

Selective PKC β inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus / N.N. Mehta, M. Sheetz, K. Price [et al.] Cardiovascular Drugs and Therapy. – 2009. – Vol.23, №1. – Р. 17–24.

Counter regulatory effects of PKCβII and PKCδ on coronary endothelial permeability / N. Gaudreault, R.M. Perrin, M. Guo [et al.] // Arteriosclerosis, Thrombosis, and Vascular Biology. – 2008. – Vol.28, №8. – Р.1527–1533.

Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells / H. Yamawaki, K. Saito, M. Okada, Y. Hara / Amer. J. Physiol. –Cell. Physiol. – 2008. – Vol.295, №6. – Р. 1510–1517.

Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCα / I. Fleming, A. Mohamed, J. Galle [et al.] // Cardiovascular Res. – 2005. – Vol.65, №4. – Р. 897–906.

A PKC-beta inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats / L. Wei, Z. Yin, Y. Yuan [et al.] // Microvasc. Res. – 2010. –Vol.80, №1. – Р. 158–165.

PKCζ decreases eNOS protein stability via inhibitory phosphorylation of ERK5 / P. Nigro, J.I. Abe, C.H. Woo [et al.] // Blood. – 2010. – Vol.116, №11. – Р. 1971–1979.

VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability / N.S. Harhaj, E.A. Felinski, E.B. Wolpert [et al.] // Invest. Ophthalmol. Visual Sci. – 2006. – Vol.47, №11. – Р. 5106–5115.

The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects / A.G. Rajapakse, X.F. Ming, J.M. Carvas, Z. Yang // Amer. J. Physiol.–Heart and Circulat. Physiol. – 2009. – Vol.296, №3. – Р. 815–822.

Reactive oxygen species and endothelial function in diabetes / Z. Fatehi-Hassanabad, C.B. Chan, B.L. Furman // Eur. J. Pharmacol. – 2010. – Vol.636, №1-3. – Р. 8–17.

Akhileshwar V. Diabetic cardiomyopathy and reactive oxygen species (ROS) related parameters in male and female rats: A comparative study / V. Akhileshwar, S.P. Patel, S. S. Katyare //Indian J. Clin. Biochem.– 2007.– Vol.22,№1.– Р. 84–90.

Beleznai T. Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation / T. Beleznai, Z. Bagi // Vascul. Pharmacol. – 2012. – Vol.56, №3-4. – Р. 115-121.

Oxidative stress and diabetes mellitus / H. Yang, X. Jin, C.W. Kei Lam, S.K. Yan // Clin. Chem. Lab. Med. – 2011. – Vol.49, №11. – Р.1773-1782.

Oxidative Stress, Nitric Oxide, and Diabetes / D. Pitocco, F. Zaccardi, E. Di Stasio, F. Romitelli // Rev. Diabet. Stud. – 2010. – Vol.7, №1. – Р. 15–25.

Role of asymmetric-dimethyl-l-arginine (ADMA) and nitrite/nitrate (NOx) in the pathogenesis of oxidative stress in female subjects with uncomplicated type 1 diabetes mellitus / D. Pitocco, F. Zaccardi, E. Di Stasio [et al.] // Diabetes Res. Clin. Pract. – 2009. – Vol.86, №3. – Р. 173–176.

Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells / X. Du, T. Matsumura, D. Edelstein [et al.] // J. Clin. Invest. – 2003. – Vol.112, №7. – Р.1049–1057.

Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis / C. Antoniades, C. Shirodaria, P. Leeson [et al.] // Eur. Heart J.– 2009. – Vol.30, №9. – Р. 1142–1150.

Bradley E.A. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion / E.A. Bradley, E.C. Eringa, C.D. Stehouwer // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol.30, №6. – Р.1137–1142.

S-glutathionylation uncouples eNOS and regulates its cellular and vascular function / Chen C.A., Wang T.Y., Varadharaj S. [et al.] // Nature. – 2010. – Vol.468, №7327. – Р. 1115–1120.

Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions / M. Olukman, C.E. Orhan, F.G. Çelenk, S. Ülker // J. Diabet. Complicat. – 2010. – Vol.24, №6. – Р. 415–423.

Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes / P.R. Nagareddy, Z. Xia, J.H. McNeill, K.M. MacLeod // Am. J. Physiol. Heart Circ. Physiol. – 2005. – Vol.289, №5. – Р. 2144–2152.

Hyperglycemic Ins2AkitaLdlr-/- mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease / C. Zhou, B. Pridgen, N. King [et al.] // J. Lipid Res. – 2011. – Vol.52, №8. – Р. 1483–1493.

Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells / G.V. Sangle, R. Zhao, T.M. Mizuno, G.X. Shen // Endocrinology. – 2010. – Vol.151, №9. – Р. 4455 –4466.

Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells / X. Xie, R. Zhao, G.X. Shen // Int. J. Mol. Sci. – 2012. – Vol.13, №12. – Р. 15867–15880.

Parakhonskiy A.P. Tsirkuliruyushchie immunnye kompleksy na pozdnikh stadiyakh sakharnogo diabeta / A.P. Parakhonskiy // Sovrem. naukoemkie tekhnol. –2006. –№ 1. – S.79–79.

Tkachuk O.V. Tsyrkuliuiuchi imunni kompleksy ta okremi pokaznyky nespetsyfichnoi rezystentnosti v schuriv zi streptozototsyn-indukovanym tsukrovym diabetom, uskladnenym ishemiieiu-reperfuziieiu holovnoho mozku / O.V. Tkachuk // Perspektyvy med. ta biol. – 2011. – T. III, № 2. – S. 77–81.

High Levels Of Oxidized Ldl In Circulating Immune Complexes Are Associated With Increased Odds Of Developing Abnormal Albuminuria In Type 1 Diabetes / M.F.Lopes-Virella, R.E.Carter, N.L.Baker [et al.] // Nephrol. Dial. Transplant.– 2011. doi: 10.1093/ndt/gfr454.

Quantitative Changes of Immune Complexes and Leukocyte Count Due to Periodontitis and their Effect on Diabetes Mellitus / M. Sharma, V. Sharma, M.K. Gupta [et al.] // Recent Res. Sci. Technol. – 2011. – Vol.3, №6. – Р. 44–46.

Gimbrone M.A. Jr. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis / M.A. Jr. Gimbrone, G. García-Cardeña // Cardiovasc. Pathol. – 2013. – Vol.22, №1. – Р. 9–15.

66. Lien'kov O.M. Stan tkanynnoho proteolizu ta fibrynolizu v kori holovnoho mozku i hipokampi za umov dvobichnoi karotydnoi ishemii-reperfuzii pry eksperymental'nomu tsukrovomu diabeti v samtsiv-schuriv / O.M. Lien'kov // Bukovyns'kyi med. visnyk. – 2009. – №3. – S.115–118. 67. Diabetes mellitus and oral mucosa alterations: prevalence and risk factors / A.S. Bastos, A.R. Leite, R. Spin-Neto, P.O. Nassar [et al.] // Diabetes Res. Clin. Pract. – 2011. – Vol.92, №1. – Р. 100-105.

Pal'tov Ie.V. Ul'trastrukturna orhanizatsiia m’iakykh tkanyn parodontu u bilykh schuriv v normi ta dynamika yikh zmin protiahom perebihu streptozototsynindukovanoho eksperymental'noho tsukrovoho diabetu / Ie.V. Pal'tov, Iu.Ia. Kryvko // Svit med. ta biol.– 2006.– №3. – S. 35–44.

Morfofunktsional'ni zminy stinok sudyn hemomikrotsyrkuliatornoho rusla na foni diabetychnykh parodontopatii (Ohliad literatury) / Ie.V.Pal'tov, Iu.Ia.Kryvko, V.B.Fik [ta in.] // Esperym. ta klin. fiziol. ta biokhim. – 2008. – №2(42) – S.81-87.

Taylor G.W., Borgnakke W.S. Periodontal disease: associations with diabetes, glycemic control and complications. Special Review in Periodontal Medicine / G.W.Taylor, W.S.Borgnakke // Oral Diseases. – 2008. – Vol.14. – Р. 191–203.

Tkachuk S.S. Histolohichni zminy sudynnoho rusla pryvushnoi slynnoi zalozy schuriv iz tsukrovym diabetom, uskladnenym karotydnoiu ishemiieiu-reperfuziieiu / S.S. Tkachuk, A.A. Halahdyna // Pyt. Eksperym. ta klin. med. Zbirnyk statei. – 2013. – Vyp.17, T.1. – S. 119-122.

Halahdyna A.A. Mikrobna ekolohiia pryepitelial'noi biolohichnoi plivky slyzovoi obolonky rotovoi porozhnyny schuriv z eksperymental'nym tsukrovym diabetom / A.A. Halahdyna, S.S. Tkachuk, I.I. Sydorchuk // Klin. ta eksperym. patol. – 2012. – T. KhI, №2(40). – S. 37-40.

Halahdyna A.A. Mikrobna ekolohiia slyzovoi obolonky rotovoi porozhnyny schuriv iz tsukrovym diabetom, uskladnenym porushenniam krovoobihu v baseini sonnykh arterii // Klin.ta eksperym. patol. – 2012. – T. KhI, №4 (42). – S. 44-47.

Ashraf F. F. Diabetes mellitus as a modulating factor of endodontic infections / F.F. Ashraf //J. Dental Educ. – 2003. – Vol.67, № 4. – 459-467.

Hydrolytic enzyme production is associated with Candida albicans biofilm formation from patients with type 1 diabetes / R.Rajendran, D.P.Robertson, P.J.Hodge, D.F.Lappin // Mycopathologia. – 2010. – Vol.170. – Р.229–235.

Influence of experimental diabetes on regulatory mechanisms of vascular response of rabbit carotid artery to acetylcholine / F.J. Miranda, J.A. Alabadí, S. Llorens [et al.] // Life Sci. – 2000. – Vol.66, №21. – Р. 2071–2080.

Leo C.H. Short-term type 1 diabetes alters the mechanism of endothelium-dependent relaxation in the rat carotid artery / C.H. Leo, A. Joshi, O.L. Woodman // Am. J. Physiol. Heart Circ. Physiol. – 2010. – Vol.299, №2. – Р. 502–511.

Impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated parotid artery of the alloxan-induced diabetic rabbit / J. Roganović, M. Radenković, N. Tanić [et al.] // Eur. J. Oral Sci. – 2011. – Vol.119, №5. – Р. 352–360.


Пристатейна бібліографія ГОСТ


1.Giacco F. Oxidative stress and diabetic complications / F. Giacco, M. Brownlee // Circ. Res. – 2010. – Vol.107, №9. – Р. 1058–1070.

 

2. Sasaki S. The Role of Oxidative Stress in the Pathogenesis of Diabetic Vascular Complications / S. Sasaki, T. Inoguchi // Diabet. Metab. J. – 2012. – Vol.36, №4. – Р. 255–261.

 

3. Madonna R. Cellular and molecular mechanisms of vascular injury in diabetes - part I: pathways of vascular disease in diabetes / R. Madonna, R. De Caterina // Vascul. Pharmacol. – 2011. – Vol.54, №3-6. – Р. 68–74.

 

4. Oxidative Stress as an Underlying Contributor in the Development of Chronic Complications in Diabetes Mellitus // S.deM. Bandeira, L.J.S. da Fonseca, G. da S. Guedes [et al.] // Int. J. Mol. Sci. – 2013. – Vol.14, №2. – Р. 3265–3284.

 

5. Mechanism of diabetic macroangiopathy / Nishio Y. // Nihon Rinsho. – 2006. – Vol.64, №11. – Р. 1991–1997.

 

6. Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney / E.A. Lee, J.Y. Seo, Z. Jiang [et al.] // Kidney Int. – 2005. – Vol.67, №5. – Р. 1762–1771.

 

7. Chronic oxidative stress as a mechanism for glucose toxicity of the beta cell in type 2 diabetes / R. Robertson, H. Zhou, T. Zhang, J.S. Harmon // Cell. Biochem. Biophys. – 2007. – Vol.48, №2-3. – Р.139–146.

 

8. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes / L. Monnier, E. Mas, C. Ginet [et al.] // JAMA. – 2006. – Vol.295, №14. – Р. 1681–1687.

 

9. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia / A. El-Osta, D. Brasacchio, D. Yao, A. Pocai [et al.] // J. Exp. Med. – 2008. – Vol.205, №10. – Р. 2409–2417.

 

10. Yu T. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission / T. Yu, B.S. Jhun, Y. Yoon // Antioxid. Redox Signal. –2011 – Vol.14, №3. – Р. 425-437.

 

11. Contribution of polyol pathway to diabetes-induced oxidative stress / S.S. Chung, E.C. Ho, K.S. Lam, S.K. Chung // J. Am. Soc. Nephrol. – 2003. – Vol.14, Suppl. 3. – Р.233–236.

 

12. Redox state-dependent and sorbitol accumulation-independent diabetic albuminuria in mice with transgene-derived human aldose reductase and sorbitol dehydrogenase deficiency / S. Ii, M. Ohta, E. Kudo [et al.] // Diabetologia. – 2004. – Vol. 47, №3. – Р. 541–548.

 

13. Son S.M. Reactive oxygen and nitrogen species in pathogenesis of vascular complications of diabetes / S.M. Son // Diabetes Metab. J. – 2012. – Vol.36, №3. – Р. 190–198.

 

14. Gao L. Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signaling / L.Gao, G.E. Mann // Cardiovasc Res. – 2009. – Vol.82, №1. – Р. 9–20.

 

15. Wang S. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes / S. Wang, M. Zhang, B. Liang // Circ. Res. – 2010. – Vol.106, №6.– Р. 1117-1128.

 

16. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets / G.R. Drummond, S. Selemidis, K.K. Griendling, C.G. Sobey // Nat. Rev. Drug Discovery. – 2011. – Vol.10, №6. – P. 453–471.

 

17. Bolisetty S. Mitochondria and reactive oxygen species: physiology and pathophysiology / S. Bolisetty, E.A. Jaimes // Int. J. Mol. Sci. – 2013. – Vol.14, №3. – Р. 6306–6344.

 

18. Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice / P. Lewis, N. Stefanovic, J. Pete [et al.]// Circulation.– 2007.– Vol.115, №16.– P. 2178–2187.

 

19. Glutathione S-Transferases Interact with AMP-Activated Protein Kinase: Evidence for S-Glutathionylation and Activation In Vitro / A. Klaus, S. Zorman, A. Berthier [et al.] // PLoS One. – 2013.– Vol.8, №5. – e62497.

 

20. Ramasamy R. Aldose reductase and cardiovascular diseases, creating human-like diabetic complications in an experimental model / R. Ramasamy, I.J. Goldberg // Circul. Res. – 2010. – Vol.106, №9. – Р. 1449–1458.

 

21. Srivastava S.K. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options / S.K. Srivastava, K.V. Ramana, A. Bhatnagar // Endocrine Rev. – 2005.– Vol.26, №3. – Р. 380–392.

 

22. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders / S.K. Srivastava, U.C.S. Yadav, A.B.M. Reddy [et al.] // Chem.-Biol. Interact. – 2011. – Vol.191, №1–3. – Р. 330–338.

 

23. Irreversibly glycated LDL induce oxidative and inflammatory state in human endothelial cells; added effect of high glucose / L. Toma, C.S. Stancu, G.M. Botez [et al.] // Biochem. Biophys. Res. Com. – 2009. – Vol.390, №3. – Р. 877–882.

 

24. Impairment of mitochondrial respiratory chain activity in aortic endothelial cells induced by glycated low-density lipoprotein / G.V. Sangle, S.K.R. Chowdhury, X. Xie [et al.] // Free Rad. Biol. Med. – 2010. – Vol.48, №6. – Р. 781–790.

 

25. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats / O. Brouwers, P.M. Niessen, I. Ferreira [et al.] // J. Biol. Chem. – 2011. – Vol.286,№2. – Р. 1374–1380.

 

26. Higai K. Amadori-modified glycated albumin predominantly induces E-selectin expression on human umbilical vein endothelial cells through NADPH oxidase activation / K. Higai, A. Shimamura, K. Matsumoto // Clinica Chimica Acta. –2006. – Vol.367, №1-2. – Р. 137–143.

 

27. Vardenafil, an inhibitor of phosphodiesterase-5, blocks advanced glycation end product (AGE)-induced up-regulation of monocyte chemoattractant protein-1 mRNA levels in endothelial cells by suppressing AGE receptor (RAGE) expression via elevation of cGMP / Y. Ishibashi, T. Matsui, M. Takeuchi, S.I. Yamagishi // Clin. Exper. Med. – 2011. – Vol.11, №2. – Р. 131–135.

 

28. High glucose increases angiopoietin-2 transcription in microvascular endothelial cells through methylglyoxal modification of mSin3A / D. Yao, T. Taguchi, T. Matsumura [et al.] // J. Biol. Chem. – 2007. – Vol.282, №42. – Р. 31038–31045.

 

29. Hyperglycemia Impairs Proteasome Function by Methylglyoxal / M.A. Queisser, D.Yao, S.Geisler [et al.] // Diabetes. – 2010. – Vol.59, №3. – Р. 670–678.

 

30. Advanced glycation end product (AGE) receptor 1 suppresses cell oxidant stress and activation signaling via EGF receptor / W. Cai, J.C. He, L. Zhu [et al.] // Proc. Natl Acad. Sci. USA. – 2006. – Vol.103, №37. – Р. 13801–13806.

 

31. Yao D. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands / D.Yao, M. Brownlee // Diabetes. – 2010. – Vol. 59, №1. – Р. 249–255.

 

32. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells / R. Piga, Y. Naito, S. Kokura [et al.] // Atherosclerosis. – 2007. – Vol.193, №2. – Р. 328–334.

 

33. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: the distinct role of protein kinase C and mitochondrial superoxide production / L. Quagliaro, L. Piconi, R. Assaloni [et al.] // Atherosclerosis. – 2005.– Vol.183, №2. – Р. 259–267.

 

34. Activation of PKC-delta and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy / P. Geraldes, J. Hiraoka-Yamamoto, M. Matsumoto [et al.] // Nat. Med. – 2009. – Vol.15, №11. – Р. 1298–1306.

 

35. Geraldes P. Activation of protein kinase C isoforms and its impact on diabetic complications / P. Geraldes, G.L. King // Circ. Res. – 2010. – Vol.106, №8. – Р. 1319–1331.

 

36. AGE/RAGE produces endothelial dysfunction in coronary arterioles in Type 2 diabetic mice / X. Gao, H. Zhang, A.M. Schmidt, C. Zhang // Amer. J. Physiol. –2008. – Vol.295, №2. – Р. 491–498.

 

37. Blockade of PKC-β protects HUVEC from advanced glycation end products induced inflammation / Y. Xu, S. Wang, L. Feng [et al.] // Intern. Immunopharmacol. – 2010.– Vol.10, №12. – Р.1552–1559.

 

38. Selective PKC β inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus / N.N. Mehta, M. Sheetz, K. Price [et al.] Cardiovascular Drugs and Therapy. – 2009. – Vol.23, №1. – Р. 17–24.

 

39. Counter regulatory effects of PKCβII and PKCδ on coronary endothelial permeability / N. Gaudreault, R.M. Perrin, M. Guo [et al.] // Arteriosclerosis, Thrombosis, and Vascular Biology. – 2008. – Vol.28, №8. – Р.1527–1533.

 

40. Methylglyoxal mediates vascular inflammation via JNK and p38 in human endothelial cells / H. Yamawaki, K. Saito, M. Okada, Y. Hara / Amer. J. Physiol. –Cell. Physiol. – 2008. – Vol.295, №6. – Р. 1510–1517.

 

41. Oxidized low-density lipoprotein increases superoxide production by endothelial nitric oxide synthase by inhibiting PKCα / I. Fleming, A. Mohamed, J. Galle [et al.] // Cardiovascular Res. – 2005. – Vol.65, №4. – Р. 897–906.

 

42. A PKC-beta inhibitor treatment reverses cardiac microvascular barrier dysfunction in diabetic rats / L. Wei, Z. Yin, Y. Yuan [et al.] // Microvasc. Res. – 2010. –Vol.80, №1. – Р. 158–165.

 

43. PKCζ decreases eNOS protein stability via inhibitory phosphorylation of ERK5 / P. Nigro, J.I. Abe, C.H. Woo [et al.] // Blood. – 2010. – Vol.116, №11. – Р. 1971–1979.

 

44. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability / N.S. Harhaj, E.A. Felinski, E.B. Wolpert [et al.] // Invest. Ophthalmol. Visual Sci. – 2006. – Vol.47, №11. – Р. 5106–5115.

 

45. The hexosamine biosynthesis inhibitor azaserine prevents endothelial inflammation and dysfunction under hyperglycemic condition through antioxidant effects / A.G. Rajapakse, X.F. Ming, J.M. Carvas, Z. Yang // Amer. J. Physiol.–Heart and Circulat. Physiol. – 2009. – Vol.296, №3. – Р. 815–822.

 

46. Reactive oxygen species and endothelial function in diabetes / Z. Fatehi-Hassanabad, C.B. Chan, B.L. Furman // Eur. J. Pharmacol. – 2010. – Vol.636, №1-3. – Р. 8–17.

 

47. Akhileshwar V. Diabetic cardiomyopathy and reactive oxygen species (ROS) related parameters in male and female rats: A comparative study / V. Akhileshwar, S.P. Patel, S. S. Katyare //Indian J. Clin. Biochem.– 2007.– Vol.22,№1.– Р. 84–90.

 

48. Beleznai T. Activation of hexosamine pathway impairs nitric oxide (NO)-dependent arteriolar dilations by increased protein O-GlcNAcylation / T. Beleznai, Z. Bagi // Vascul. Pharmacol. – 2012. – Vol.56, №3-4. – Р. 115-121.

 

49. Oxidative stress and diabetes mellitus / H. Yang, X. Jin, C.W. Kei Lam, S.K. Yan // Clin. Chem. Lab. Med. – 2011. – Vol.49, №11. – Р.1773-1782.

 

50. Oxidative Stress, Nitric Oxide, and Diabetes / D. Pitocco, F. Zaccardi, E. Di Stasio, F. Romitelli // Rev. Diabet. Stud. – 2010. – Vol.7, №1. – Р. 15–25.

 

51. Role of asymmetric-dimethyl-l-arginine (ADMA) and nitrite/nitrate (NOx) in the pathogenesis of oxidative stress in female subjects with uncomplicated type 1 diabetes mellitus / D. Pitocco, F. Zaccardi, E. Di Stasio [et al.] // Diabetes Res. Clin. Pract. – 2009. – Vol.86, №3. – Р. 173–176.

 

52. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells / X. Du, T. Matsumura, D. Edelstein [et al.] // J. Clin. Invest. – 2003. – Vol.112, №7. – Р.1049–1057.

 

53. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis / C. Antoniades, C. Shirodaria, P. Leeson [et al.] // Eur. Heart J.– 2009. – Vol.30, №9. – Р. 1142–1150.

 

54. Bradley E.A. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside in the muscle microcirculation increases nitric oxide synthesis and microvascular perfusion / E.A. Bradley, E.C. Eringa, C.D. Stehouwer // Arterioscler. Thromb. Vasc. Biol. – 2010. – Vol.30, №6. – Р.1137–1142.

 

55. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function / Chen C.A., Wang T.Y., Varadharaj S. [et al.] // Nature. – 2010. – Vol.468, №7327. – Р. 1115–1120.

 

56. Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions / M. Olukman, C.E. Orhan, F.G. Çelenk, S. Ülker // J. Diabet. Complicat. – 2010. – Vol.24, №6. – Р. 415–423.

 

57. Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-induced diabetes / P.R. Nagareddy, Z. Xia, J.H. McNeill, K.M. MacLeod // Am. J. Physiol. Heart Circ. Physiol. – 2005. – Vol.289, №5. – Р. 2144–2152.

 

58. Hyperglycemic Ins2AkitaLdlr-/- mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease / C. Zhou, B. Pridgen, N. King [et al.] // J. Lipid Res. – 2011. – Vol.52, №8. – Р. 1483–1493.

 

59. Involvement of RAGE, NADPH oxidase, and Ras/Raf-1 pathway in glycated LDL-induced expression of heat shock factor-1 and plasminogen activator inhibitor-1 in vascular endothelial cells / G.V. Sangle, R. Zhao, T.M. Mizuno, G.X. Shen // Endocrinology. – 2010. – Vol.151, №9. – Р. 4455 –4466.

 

60. Impact of Cyanidin-3-Glucoside on Glycated LDL-Induced NADPH Oxidase Activation, Mitochondrial Dysfunction and Cell Viability in Cultured Vascular Endothelial Cells / X. Xie, R. Zhao, G.X. Shen // Int. J. Mol. Sci. – 2012. – Vol.13, №12. – Р. 15867–15880.

 

61. Парахонский А.П. Циркулирующие иммунные комплексы на поздних стадиях сахарного диабета / А.П. Парахонский // Соврем. наукоемкие технол. –2006. –№ 1. – С.79–79.

 

62. Ткачук О.В. Циркулюючі імунні комплекси та окремі показники неспецифічної резистентності в щурів зі стрептозотоцин-індукованим цукровим діабетом, ускладненим ішемією-реперфузією головного мозку / О.В. Ткачук // Перспективи мед. та біол. – 2011. – Т. ІІІ, № 2. – С. 77–81.

 

63. High Levels Of Oxidized Ldl In Circulating Immune Complexes Are Associated With Increased Odds Of Developing Abnormal Albuminuria In Type 1 Diabetes / M.F.Lopes-Virella, R.E.Carter, N.L.Baker [et al.] // Nephrol. Dial. Transplant.– 2011. doi: 10.1093/ndt/gfr454.

 

64. Quantitative Changes of Immune Complexes and Leukocyte Count Due to Periodontitis and their Effect on Diabetes Mellitus / M. Sharma, V. Sharma, M.K. Gupta [et al.] // Recent Res. Sci. Technol. – 2011. – Vol.3, №6. – Р. 44–46.

 

65. Gimbrone M.A. Jr. Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis / M.A. Jr. Gimbrone, G. García-Cardeña // Cardiovasc. Pathol. – 2013. – Vol.22, №1. – Р. 9–15.

 

66. Лєньков О.М. Стан тканинного протеолізу та фібринолізу в корі головного мозку і гіпокампі за умов двобічної каротидної ішемії-реперфузії при експериментальному цукровому діабеті в самців-щурів / О.М. Лєньков // Буковинський мед. вісник. – 2009. – №3. – С.115–118.

 

67. Diabetes mellitus and oral mucosa alterations: prevalence and risk factors / A.S. Bastos, A.R. Leite, R. Spin-Neto, P.O. Nassar [et al.] // Diabetes Res. Clin. Pract. – 2011. – Vol.92, №1. – Р. 100-105.

 

68. Галагдина А.А. Гістологічні зміни в слизовій оболонці порожнини рота щурів з експериментальним цукровим діабетом, ускладненим каротидною ішемією-реперфузією / А.А. Галагдина, С.С. Ткачук // Клін. та експерим. патол. – 2013. – Т.ХІІ, №1(43). – С. 55-60.

 

69. Пальтов Є.В. Ультраструктурна організація м’яких тканин пародонту у білих щурів в нормі та динаміка їх змін протягом перебігу стрептозотоциніндукованого експериментального цукрового діабету / Є.В. Пальтов, Ю.Я. Кривко // Світ мед. та біол.– 2006.– №3. – С. 35–44.

 

70. Морфофункціональні зміни стінок судин гемомікроциркуляторного русла на фоні діабетичних пародонтопатій (Огляд літератури) / Є.В.Пальтов, Ю.Я.Кривко, В.Б.Фік [та ін.] // Есперим. та клін. фізіол. та біохім. – 2008. – №2(42) – С.81-87.

 

71. Taylor G.W., Borgnakke W.S. Periodontal disease: associations with diabetes, glycemic control and complications. Special Review in Periodontal Medicine / G.W.Taylor, W.S.Borgnakke // Oral Diseases. – 2008. – Vol.14. – Р. 191–203.

 

72. Ткачук С.С. Гістологічні зміни судинного русла привушної слинної залози щурів із цукровим діабетом, ускладненим каротидною ішемією-реперфузією / С.С. Ткачук, А.А. Галагдина // Пит. Експерим. та клін. мед. Збірник статей. – 2013. – Вип.17, Т.1. – С. 119-122.

 

73. Галагдина А.А. Мікробна екологія приепітеліальної біологічної плівки слизової оболонки ротової порожнини щурів з експериментальним цукровим діабетом / А.А. Галагдина, С.С. Ткачук, І.Й. Сидорчук // Клін. та експерим. патол. – 2012. – Т. ХІ, №2(40). – С. 37-40.

 

74. Галагдина А.А. Мікробна екологія слизової оболонки ротової порожнини щурів із цукровим діабетом, ускладненим порушенням кровообігу в басейні сонних артерій // Клін.та експерим. патол. – 2012. – Т. ХІ, №4 (42). – С. 44-47.

 

75. Ashraf F. F. Diabetes mellitus as a modulating factor of endodontic infections / F.F. Ashraf //J. Dental Educ. – 2003. – Vol.67, № 4. – 459-467.

 

76. Hydrolytic enzyme production is associated with Candida albicans biofilm formation from patients with type 1 diabetes / R.Rajendran, D.P.Robertson, P.J.Hodge, D.F.Lappin // Mycopathologia. – 2010. – Vol.170. – Р.229–235.

 

77. Influence of experimental diabetes on regulatory mechanisms of vascular response of rabbit carotid artery to acetylcholine / F.J. Miranda, J.A. Alabadí, S. Llorens [et al.] // Life Sci. – 2000. – Vol.66, №21. – Р. 2071–2080.

 

78. Leo C.H. Short-term type 1 diabetes alters the mechanism of endothelium-dependent relaxation in the rat carotid artery / C.H. Leo, A. Joshi, O.L. Woodman // Am. J. Physiol. Heart Circ. Physiol. – 2010. – Vol.299, №2. – Р. 502–511.

 

79. Impairment of acetylcholine-mediated endothelium-dependent relaxation in isolated parotid artery of the alloxan-induced diabetic rabbit / J. Roganović, M. Radenković, N. Tanić [et al.] // Eur. J. Oral Sci. – 2011. – Vol.119, №5. – Р. 352–360.





DOI: https://doi.org/10.24061/1727-4338.XIV.3.53.2015.43

Посилання

  • Поки немає зовнішніх посилань.


© Clinical & Experimental Pathology, 2004-2018
When you copy an active link to the material is required
ISSN 2521-1153 (Online)
ISSN 1727-4338 (Print)
tel./fax +38(0372)553754